IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i9p2428-d542576.html
   My bibliography  Save this article

Analyzing the Fast-Charging Potential for Electric Vehicles with Local Photovoltaic Power Production in French Suburban Highway Network

Author

Listed:
  • Abood Mourad

    (Laboratoire Génie Electrique et Electronique de Paris, CentraleSupélec, Université Paris-Saclay, 91190 Gif-sur-Yvette, France)

  • Martin Hennebel

    (Laboratoire Génie Electrique et Electronique de Paris, CentraleSupélec, Université Paris-Saclay, 91190 Gif-sur-Yvette, France)

  • Ahmed Amrani

    (Institut de Recherche Technologique SystemX, 91120 Palaiseau, France)

  • Amira Ben Hamida

    (Institut de Recherche Technologique SystemX, 91120 Palaiseau, France)

Abstract

The need for deploying fast-charging stations for electric vehicles (EVs) is becoming essential in recent years. This need is justified by the increasing charging demand and supported by new charging technologies making EV chargers more efficient. In this paper, we provide a survey on EV fast-charging models and introduce a data-driven approach with an optimization model for deploying EV fast-chargers for both electric vehicles and heavy trucks traveling through a network of suburban highways. This deployment aims at satisfying EV charging demands while respecting the limits imposed by the electric grid. We also consider the availability of local photovoltaic (PV) farm and integrate its produced power to the proposed charging network. Finally, through a case study on Paris-Saclay area, we provide locations for EV charging stations and analyze the benefits of integrating PV power at different prices, production costs and charging capacities. The obtained results also suggest potential enhancements to the charging network in order to accommodate the increasing charging demand for EVs in the future.

Suggested Citation

  • Abood Mourad & Martin Hennebel & Ahmed Amrani & Amira Ben Hamida, 2021. "Analyzing the Fast-Charging Potential for Electric Vehicles with Local Photovoltaic Power Production in French Suburban Highway Network," Energies, MDPI, vol. 14(9), pages 1-20, April.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2428-:d:542576
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/9/2428/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/9/2428/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mourad, Abood & Puchinger, Jakob & Chu, Chengbin, 2019. "A survey of models and algorithms for optimizing shared mobility," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 323-346.
    2. Capar, Ismail & Kuby, Michael & Leon, V. Jorge & Tsai, Yu-Jiun, 2013. "An arc cover–path-cover formulation and strategic analysis of alternative-fuel station locations," European Journal of Operational Research, Elsevier, vol. 227(1), pages 142-151.
    3. S. A. MirHassani & R. Ebrazi, 2013. "A Flexible Reformulation of the Refueling Station Location Problem," Transportation Science, INFORMS, vol. 47(4), pages 617-628, November.
    4. Csiszár, Csaba & Csonka, Bálint & Földes, Dávid & Wirth, Ervin & Lovas, Tamás, 2019. "Urban public charging station locating method for electric vehicles based on land use approach," Journal of Transport Geography, Elsevier, vol. 74(C), pages 173-180.
    5. Vazifeh, Mohammad M. & Zhang, Hongmou & Santi, Paolo & Ratti, Carlo, 2019. "Optimizing the deployment of electric vehicle charging stations using pervasive mobility data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 121(C), pages 75-91.
    6. Chung, Sung Hoon & Kwon, Changhyun, 2015. "Multi-period planning for electric car charging station locations: A case of Korean Expressways," European Journal of Operational Research, Elsevier, vol. 242(2), pages 677-687.
    7. Shareef, Hussain & Islam, Md. Mainul & Mohamed, Azah, 2016. "A review of the stage-of-the-art charging technologies, placement methodologies, and impacts of electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 403-420.
    8. Thomas, Dimitrios & Deblecker, Olivier & Ioakimidis, Christos S., 2018. "Optimal operation of an energy management system for a grid-connected smart building considering photovoltaics’ uncertainty and stochastic electric vehicles’ driving schedule," Applied Energy, Elsevier, vol. 210(C), pages 1188-1206.
    9. Anil K. Madhusudhanan & Xiaoxiang Na & David Cebon, 2021. "A Computationally Efficient Framework for Modelling Energy Consumption of ICE and Electric Vehicles," Energies, MDPI, vol. 14(7), pages 1-15, April.
    10. Khan, Faizan A. & Pal, Nitai & Saeed, Syed.H., 2018. "Review of solar photovoltaic and wind hybrid energy systems for sizing strategies optimization techniques and cost analysis methodologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 92(C), pages 937-947.
    11. C. Birk Jones & Matthew Lave & William Vining & Brooke Marshall Garcia, 2021. "Uncontrolled Electric Vehicle Charging Impacts on Distribution Electric Power Systems with Primarily Residential, Commercial or Industrial Loads," Energies, MDPI, vol. 14(6), pages 1-16, March.
    12. Sanchari Deb & Kari Tammi & Karuna Kalita & Pinakeswar Mahanta, 2018. "Review of recent trends in charging infrastructure planning for electric vehicles," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 7(6), November.
    13. Good, Clara & Shepero, Mahmoud & Munkhammar, Joakim & Boström, Tobias, 2019. "Scenario-based modelling of the potential for solar energy charging of electric vehicles in two Scandinavian cities," Energy, Elsevier, vol. 168(C), pages 111-125.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiang, Wei & Wang, Teng & Yuan, Dongdong & Sha, Aimin & Zhang, Shuo & Zhang, Yufei & Xiao, Jingjing & Xing, Chengwei, 2024. "Available solar resources and photovoltaic system planning strategy for highway," Renewable and Sustainable Energy Reviews, Elsevier, vol. 203(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rabl, Regina & Reuter-Oppermann, Melanie & Jochem, Patrick E.P., 2024. "Charging infrastructure for electric vehicles in New Zealand," Transport Policy, Elsevier, vol. 148(C), pages 124-144.
    2. Metais, M.O. & Jouini, O. & Perez, Y. & Berrada, J. & Suomalainen, E., 2022. "Too much or not enough? Planning electric vehicle charging infrastructure: A review of modeling options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    3. Anjos, Miguel F. & Gendron, Bernard & Joyce-Moniz, Martim, 2020. "Increasing electric vehicle adoption through the optimal deployment of fast-charging stations for local and long-distance travel," European Journal of Operational Research, Elsevier, vol. 285(1), pages 263-278.
    4. Hosseini, Meysam & MirHassani, S.A., 2015. "Refueling-station location problem under uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 84(C), pages 101-116.
    5. Yıldız, Barış & Arslan, Okan & Karaşan, Oya Ekin, 2016. "A branch and price approach for routing and refueling station location model," European Journal of Operational Research, Elsevier, vol. 248(3), pages 815-826.
    6. Böhle, Alexander, 2021. "Multi-Period Optimization of the Refuelling Infrastructure for Alternative Fuel Vehicles," Junior Management Science (JUMS), Junior Management Science e. V., vol. 6(4), pages 790-825.
    7. Tran, Trung Hieu & Nagy, Gábor & Nguyen, Thu Ba T. & Wassan, Niaz A., 2018. "An efficient heuristic algorithm for the alternative-fuel station location problem," European Journal of Operational Research, Elsevier, vol. 269(1), pages 159-170.
    8. Xu, Min & Meng, Qiang, 2020. "Optimal deployment of charging stations considering path deviation and nonlinear elastic demand," Transportation Research Part B: Methodological, Elsevier, vol. 135(C), pages 120-142.
    9. Faping Wang & Rui Chen & Lixin Miao & Peng Yang & Bin Ye, 2019. "Location Optimization of Electric Vehicle Mobile Charging Stations Considering Multi-Period Stochastic User Equilibrium," Sustainability, MDPI, vol. 11(20), pages 1-19, October.
    10. El Mehdi Er Raqabi & Wenkai Li, 2022. "An Electric Vehicle Migration Framework," Working Papers EMS_2022_03, Research Institute, International University of Japan.
    11. Joonho Ko & Tae-Hyoung Tommy Gim & Randall Guensler, 2017. "Locating refuelling stations for alternative fuel vehicles: a review on models and applications," Transport Reviews, Taylor & Francis Journals, vol. 37(5), pages 551-570, September.
    12. Göpfert, Paul & Bock, Stefan, 2019. "A Branch&Cut approach to recharging and refueling infrastructure planning," European Journal of Operational Research, Elsevier, vol. 279(3), pages 808-823.
    13. Van Can Nguyen & Chi-Tai Wang & Ying-Jiun Hsieh, 2021. "Electrification of Highway Transportation with Solar and Wind Energy," Sustainability, MDPI, vol. 13(10), pages 1-28, May.
    14. Trung Hieu Tran & Thu Ba T. Nguyen, 2019. "Alternative-fuel station network design under impact of station failures," Annals of Operations Research, Springer, vol. 279(1), pages 151-186, August.
    15. He, Sylvia Y. & Kuo, Yong-Hong & Sun, Ka Kit, 2022. "The spatial planning of public electric vehicle charging infrastructure in a high-density city using a contextualised location-allocation model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 160(C), pages 21-44.
    16. Arslan, Okan & Karaşan, Oya Ekin, 2016. "A Benders decomposition approach for the charging station location problem with plug-in hybrid electric vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 670-695.
    17. Lee, Chungmok & Han, Jinil, 2017. "Benders-and-Price approach for electric vehicle charging station location problem under probabilistic travel range," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 130-152.
    18. Chung, Sung Hoon & Kwon, Changhyun, 2015. "Multi-period planning for electric car charging station locations: A case of Korean Expressways," European Journal of Operational Research, Elsevier, vol. 242(2), pages 677-687.
    19. Yang, Jun & Guo, Fang & Zhang, Min, 2017. "Optimal planning of swapping/charging station network with customer satisfaction," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 103(C), pages 174-197.
    20. Shaohua Cui & Hui Zhao & Cuiping Zhang, 2018. "Locating Charging Stations of Various Sizes with Different Numbers of Chargers for Battery Electric Vehicles," Energies, MDPI, vol. 11(11), pages 1-22, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2428-:d:542576. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.