IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i7p2326-d156321.html
   My bibliography  Save this article

Management of Power Quality Issues from an Economic Point of View

Author

Listed:
  • Horia Gheorghe Beleiu

    (Department of Electrical Power System and Management, Faculty of Electrical Engineering, Technical University of Cluj-Napoca, 28 Memorandumului Street, 400114 Cluj-Napoca, Romania)

  • Ioana Natalia Beleiu

    (Department of Management, Faculty of Economics and Business Administration, Babes-Bolyai University, 58-60 Teodor Mihali Street, 400591 Cluj-Napoca, Romania)

  • Sorin Gheorghe Pavel

    (Department of Electrical Power System and Management, Faculty of Electrical Engineering, Technical University of Cluj-Napoca, 28 Memorandumului Street, 400114 Cluj-Napoca, Romania)

  • Cosmin Pompei Darab

    (Department of Electrical Power System and Management, Faculty of Electrical Engineering, Technical University of Cluj-Napoca, 28 Memorandumului Street, 400114 Cluj-Napoca, Romania)

Abstract

In a context with an increased level of competitiveness, companies are more and more interested in aspects concerning sustainable development. The implications of inadequate power quality (PQ) can determine important financial losses and influence companies’ sustainable development through the generated effects. This article aims to facilitate the management of PQ by proposing a method for estimating the economic consequences of a poor PQ, with priority for the disturbances with significant economic effects. To determine the total cost for each type of PQ perturbation that may occur a classification of cost categories was made such as interruptions, process slowdowns, equipment failure, equipment downtime, reduced energy efficiency, lower product quality, lower labor productivity, and other indirect costs. Each PQ disturbance affects the final end-user differently. For calculating the total value for each type of PQ issues, different calculation formulas have been proposed so that each perturbation includes only those components associated with that perturbation. A case study was used to validate the proposed method. Also, the paper includes a technical and economic analysis of the possible compensation solutions for PQ disturbances that may affect the studied company. In conclusion, an understanding of PQ issues’ consequences and an appropriate approach to PQ compensation solutions can be beneficial to any electrical power end-user.

Suggested Citation

  • Horia Gheorghe Beleiu & Ioana Natalia Beleiu & Sorin Gheorghe Pavel & Cosmin Pompei Darab, 2018. "Management of Power Quality Issues from an Economic Point of View," Sustainability, MDPI, vol. 10(7), pages 1-16, July.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:7:p:2326-:d:156321
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/7/2326/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/7/2326/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Elbasuony, Ghada S. & Abdel Aleem, Shady H.E. & Ibrahim, Ahmed M. & Sharaf, Adel M., 2018. "A unified index for power quality evaluation in distributed generation systems," Energy, Elsevier, vol. 149(C), pages 607-622.
    2. Isabel M. Moreno-Garcia & Antonio Moreno-Munoz & Aurora Gil-de-Castro & Math Bollen & Irene Y. H. Gu, 2015. "Novel Segmentation Technique for Measured Three-Phase Voltage Dips," Energies, MDPI, vol. 8(8), pages 1-20, August.
    3. Sharma, A. & Rajpurohit, B.S. & Singh, S.N., 2018. "A review on economics of power quality: Impact, assessment and mitigation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 363-372.
    4. Alena Otcenasova & Roman Bodnar & Michal Regula & Marek Hoger & Michal Repak, 2017. "Methodology for Determination of the Number of Equipment Malfunctions Due to Voltage Sags," Energies, MDPI, vol. 10(3), pages 1-26, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahammed, Md. Tanvir & Khan, Imran, 2022. "Ensuring power quality and demand-side management through IoT-based smart meters in a developing country," Energy, Elsevier, vol. 250(C).
    2. Dawid Buła & Jarosław Michalak & Marcin Zygmanowski & Tomasz Adrikowski & Grzegorz Jarek & Michał Jeleń, 2021. "Control Strategy of 1 kV Hybrid Active Power Filter for Mining Applications," Energies, MDPI, vol. 14(16), pages 1-25, August.
    3. Abbas Marini & Luigi Piegari & S-Saeedallah Mortazavi & Mohammad-S Ghazizadeh, 2020. "Coordinated Operation of Energy Storage Systems for Distributed Harmonic Compensation in Microgrids," Energies, MDPI, vol. 13(3), pages 1-22, February.
    4. Rosalia Sinvula & Khaled Mohamed Abo-Al-Ez & Mohamed Tariq Kahn, 2020. "A Proposed Harmonic Monitoring System for Large Power Users Considering Harmonic Limits," Energies, MDPI, vol. 13(17), pages 1-18, September.
    5. Valery Pupin & Victor Orlov, 2023. "Modeling of Electrical Systems for Uninterrupted Operation of Drives in Case of Short-Term Distortions in the Supply Networks," Energies, MDPI, vol. 16(10), pages 1-20, May.
    6. Mihai Rata & Gabriela Rata & Constantin Filote & Maria Simona Raboaca & Adrian Graur & Ciprian Afanasov & Andreea-Raluca Felseghi, 2019. "The ElectricalVehicle Simulator for Charging Station in Mode 3 of IEC 61851-1 Standard," Energies, MDPI, vol. 13(1), pages 1-10, December.
    7. Fei Mei & Yong Ren & Qingliang Wu & Chenyu Zhang & Yi Pan & Haoyuan Sha & Jianyong Zheng, 2018. "Online Recognition Method for Voltage Sags Based on a Deep Belief Network," Energies, MDPI, vol. 12(1), pages 1-16, December.
    8. Dawid Buła & Dariusz Grabowski & Marcin Maciążek, 2022. "A Review on Optimization of Active Power Filter Placement and Sizing Methods," Energies, MDPI, vol. 15(3), pages 1-35, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shen, Boyang & Chen, Yu & Li, Chuanyue & Wang, Sheng & Chen, Xiaoyuan, 2021. "Superconducting fault current limiter (SFCL): Experiment and the simulation from finite-element method (FEM) to power/energy system software," Energy, Elsevier, vol. 234(C).
    2. Gerber, Daniel L. & Ghatpande, Omkar A. & Nazir, Moazzam & Heredia, Willy G. Bernal & Feng, Wei & Brown, Richard E., 2022. "Energy and power quality measurement for electrical distribution in AC and DC microgrid buildings," Applied Energy, Elsevier, vol. 308(C).
    3. Bielecki, Sławomir & Skoczkowski, Tadeusz, 2018. "An enhanced concept of Q-power management," Energy, Elsevier, vol. 162(C), pages 335-353.
    4. Javier Fernández-Morales & Juan-José González-de-la-Rosa & José-María Sierra-Fernández & Olivia Florencias-Oliveros & Paula Remigio-Carmona & Manuel-Jesús Espinosa-Gavira & Agustín Agüera-Pérez & José, 2022. "Methodology for the Surveillance the Voltage Supply in Public Buildings Using the ITIC Curve and Python Programming," Data, MDPI, vol. 7(11), pages 1-10, November.
    5. Fei Mei & Yong Ren & Qingliang Wu & Chenyu Zhang & Yi Pan & Haoyuan Sha & Jianyong Zheng, 2018. "Online Recognition Method for Voltage Sags Based on a Deep Belief Network," Energies, MDPI, vol. 12(1), pages 1-16, December.
    6. Mohamed Mohamed Khaleel & Mohd Rafi Adzman & Samila Mat Zali, 2021. "An Integrated of Hydrogen Fuel Cell to Distribution Network System: Challenging and Opportunity for D-STATCOM," Energies, MDPI, vol. 14(21), pages 1-26, October.
    7. Yang, Shuxia & Wang, Xiongfei & Xu, Jiayu & Tang, Mingrun & Chen, Guang, 2023. "Distribution network adaptability assessment considering distributed PV “reverse power flow” behavior - a case study in Beijing," Energy, Elsevier, vol. 275(C).
    8. Ventosa-Cutillas, Antonio & Montero-Robina, Pablo & Cuesta, Federico & Gordillo, Francisco, 2020. "A simple modulation approach for interfacing three-level Neutral-Point-Clamped converters to the grid," Energy, Elsevier, vol. 205(C).
    9. Alexandre Serrano-Fontova & Pablo Casals Torrens & Ricard Bosch, 2019. "Power Quality Disturbances Assessment during Unintentional Islanding Scenarios. A Contribution to Voltage Sag Studies," Energies, MDPI, vol. 12(16), pages 1-21, August.
    10. Alena Otcenasova & Roman Bodnar & Michal Regula & Marek Hoger & Michal Repak, 2017. "Methodology for Determination of the Number of Equipment Malfunctions Due to Voltage Sags," Energies, MDPI, vol. 10(3), pages 1-26, March.
    11. Po Li & Xiang Li & Jinghui Li & Yimin You & Zhongqing Sang, 2021. "A Real-Time Harmonic Extraction Approach for Distorted Grid," Mathematics, MDPI, vol. 9(18), pages 1-20, September.
    12. Barbie, Eli & Rabinovici, Raul & Kuperman, Alon, 2021. "Analytical formulation and optimization of Weighted Total Harmonic Distortion in three-phase staircase modulated multilevel inverters," Energy, Elsevier, vol. 215(PA).
    13. Kai Ding & Wei Li & Yimin Qian & Pan Hu & Zengrui Huang, 2022. "Application of User Side Energy Storage System for Power Quality Enhancement of Premium Power Park," Sustainability, MDPI, vol. 14(6), pages 1-14, March.
    14. Francisco G. Montoya & Raul Baños & Alfredo Alcayde & Maria G. Montoya & Francisco Manzano-Agugliaro, 2018. "Power Quality: Scientific Collaboration Networks and Research Trends," Energies, MDPI, vol. 11(8), pages 1-16, August.
    15. Ma, Xin & Zhang, Chenghui & Li, Ke & Li, Fan & Wang, Haiyang & Chen, Jianfei, 2020. "Optimal dispatching strategy of regional micro energy system with compressed air energy storage," Energy, Elsevier, vol. 212(C).
    16. Muhammad Saeed Uz Zaman & Syed Basit Ali Bukhari & Khalid Mousa Hazazi & Zunaib Maqsood Haider & Raza Haider & Chul-Hwan Kim, 2018. "Frequency Response Analysis of a Single-Area Power System with a Modified LFC Model Considering Demand Response and Virtual Inertia," Energies, MDPI, vol. 11(4), pages 1-20, March.
    17. Du, Puliang & Chen, Zhong & Gong, Xiaomin, 2020. "Load response potential evaluation for distribution networks: A hybrid decision-making model with intuitionistic normal cloud and unknown weight information," Energy, Elsevier, vol. 192(C).
    18. Andrzej Szromba, 2023. "Improving the Efficiency of the Shunt Active Power Filter Acting with the Use of the Hysteresis Current Control Technique," Energies, MDPI, vol. 16(10), pages 1-16, May.
    19. Chen, Xiaoyuan & Zhang, Mingshun & Jiang, Shan & Gou, Huayu & Zhou, Pang & Yang, Ruohuan & Shen, Boyang, 2023. "Energy reliability enhancement of a data center/wind hybrid DC network using superconducting magnetic energy storage," Energy, Elsevier, vol. 263(PA).
    20. Jagannath Patra & Nitai Pal, 2022. "A Mathematical Approach of Voltage Sag Analysis Incorporating Bivariate Probability Distribution in a Meshed System," Energies, MDPI, vol. 15(20), pages 1-19, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:7:p:2326-:d:156321. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.