IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i8p1568-d225837.html
   My bibliography  Save this article

Natural Gas Intermittent Kiln for the Ceramic Industry: A Transient Thermal Analysis

Author

Listed:
  • Ricardo S. Gomez

    (Department of Mechanical Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil)

  • Túlio R. N. Porto

    (Department of Mechanical Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil)

  • Hortência L. F. Magalhães

    (Department of Chemical Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil)

  • Gicelia Moreira

    (Department of Chemical Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil)

  • Anastácia M. M. C. N. André

    (Department of Mechanical Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil)

  • Ruth B. F. Melo

    (Department of Physics, State University of Paraiba, Campina Grande 58431-410, Brazil)

  • Antonio G. B. Lima

    (Department of Mechanical Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil)

Abstract

Drying and firing of ceramic products are processes that require high energy consumption. Making these processes more efficient can improve product quality, reduce processing time and energy consumption, and promote economic and environmental gains. In this sense, this work aims to quantify heat transfer in an intermittent ceramic kiln during the heating and cooling stages, with and without thermal insulation. All mathematical formulation is based on the first law of thermodynamics. From the results, we conclude that the greatest heat loss occurs by radiation in the sidewalls of the equipment, and that a considerable amount of energy is required to heat the sidewalls, base, and ceiling of the kiln. Further, with the use of thermal insulation, it was concluded that a high reduction in the heat lost through the sidewalls was achieved, thus providing a global energy gain of approximately 35% and a reduction in the maximum external surface temperature from 249.34 to 79.47 °C when compared to the kiln without thermal insulation, reducing the risks of work accidents and thermal discomfort when in operation.

Suggested Citation

  • Ricardo S. Gomez & Túlio R. N. Porto & Hortência L. F. Magalhães & Gicelia Moreira & Anastácia M. M. C. N. André & Ruth B. F. Melo & Antonio G. B. Lima, 2019. "Natural Gas Intermittent Kiln for the Ceramic Industry: A Transient Thermal Analysis," Energies, MDPI, vol. 12(8), pages 1-29, April.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:8:p:1568-:d:225837
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/8/1568/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/8/1568/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Han, Sang Heon & Chang, Daejun & Huh, Cheol, 2011. "Efficiency analysis of radiative slab heating in a walking-beam-type reheating furnace," Energy, Elsevier, vol. 36(2), pages 1265-1272.
    2. Almohammadi, K.M. & Ingham, D.B. & Ma, L. & Pourkashan, M., 2013. "Computational fluid dynamics (CFD) mesh independency techniques for a straight blade vertical axis wind turbine," Energy, Elsevier, vol. 58(C), pages 483-493.
    3. Hadała, Beata & Malinowski, Zbigniew & Rywotycki, Marcin, 2017. "Energy losses from the furnace chamber walls during heating and heat treatment of heavy forgings," Energy, Elsevier, vol. 139(C), pages 298-314.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Iván D. Palacio-Caro & Pedro N. Alvarado-Torres & Luis F. Cardona-Sepúlveda, 2020. "Numerical Simulation of the Flow and Heat Transfer in an Electric Steel Tempering Furnace," Energies, MDPI, vol. 13(14), pages 1-22, July.
    2. Václav Kočí & Lenka Scheinherrová & Jiří Maděra & Martin Keppert & Zbigniew Suchorab & Grzegorz Łagód & Robert Černý, 2020. "Experimental and Computational Study of Thermal Processes in Red Clays Exposed to High Temperatures," Energies, MDPI, vol. 13(9), pages 1-15, May.
    3. Miguel Castro Oliveira & Muriel Iten & Pedro L. Cruz & Helena Monteiro, 2020. "Review on Energy Efficiency Progresses, Technologies and Strategies in the Ceramic Sector Focusing on Waste Heat Recovery," Energies, MDPI, vol. 13(22), pages 1-24, November.
    4. A.M. Vasconcelos da Silva & J.M.P.Q. Delgado & A.S. Guimarães & W.M.P. Barbosa de Lima & R. Soares Gomez & R. Pereira de Farias & E. Santana de Lima & A.G. Barbosa de Lima, 2020. "Industrial Ceramic Blocks for Buildings: Clay Characterization and Drying Experimental Study," Energies, MDPI, vol. 13(11), pages 1-22, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rocha, P. A. Costa & Rocha, H. H. Barbosa & Carneiro, F. O. Moura & da Silva, M. E. Vieira & de Andrade, C. Freitas, 2016. "A case study on the calibration of the k–ω SST (shear stress transport) turbulence model for small scale wind turbines designed with cambered and symmetrical airfoils," Energy, Elsevier, vol. 97(C), pages 144-150.
    2. Balduzzi, Francesco & Bianchini, Alessandro & Ferrara, Giovanni & Ferrari, Lorenzo, 2016. "Dimensionless numbers for the assessment of mesh and timestep requirements in CFD simulations of Darrieus wind turbines," Energy, Elsevier, vol. 97(C), pages 246-261.
    3. Liu, H. & Saffaripour, M. & Mellin, P. & Grip, C.-E. & Yang, W. & Blasiak, W., 2014. "A thermodynamic study of hot syngas impurities in steel reheating furnaces – Corrosion and interaction with oxide scales," Energy, Elsevier, vol. 77(C), pages 352-361.
    4. Meana-Fernández, Andrés & Solís-Gallego, Irene & Fernández Oro, Jesús Manuel & Argüelles Díaz, Katia María & Velarde-Suárez, Sandra, 2018. "Parametrical evaluation of the aerodynamic performance of vertical axis wind turbines for the proposal of optimized designs," Energy, Elsevier, vol. 147(C), pages 504-517.
    5. Jinghua Lin & You-Lin Xu & Yong Xia & Chao Li, 2019. "Structural Analysis of Large-Scale Vertical-Axis Wind Turbines, Part I: Wind Load Simulation," Energies, MDPI, vol. 12(13), pages 1-31, July.
    6. Liu, Qingsong & Miao, Weipao & Ye, Qi & Li, Chun, 2022. "Performance assessment of an innovative Gurney flap for straight-bladed vertical axis wind turbine," Renewable Energy, Elsevier, vol. 185(C), pages 1124-1138.
    7. Celik, Yunus & Ingham, Derek & Ma, Lin & Pourkashanian, Mohamed, 2022. "Design and aerodynamic performance analyses of the self-starting H-type VAWT having J-shaped aerofoils considering various design parameters using CFD," Energy, Elsevier, vol. 251(C).
    8. Bedon, Gabriele & Raciti Castelli, Marco & Benini, Ernesto, 2014. "Proposal for an innovative chord distribution in the Troposkien vertical axis wind turbine concept," Energy, Elsevier, vol. 66(C), pages 689-698.
    9. Stefania Zanforlin & Fulvio Buzzi & Marika Francesconi, 2019. "Performance Analysis of Hydrofoil Shaped and Bi-Directional Diffusers for Cross Flow Tidal Turbines in Single and Double-Rotor Configurations," Energies, MDPI, vol. 12(2), pages 1-25, January.
    10. Sajad Mirzaei & Nima Bohlooli Arkhazloo & Farzad Bazdidi-Tehrani & Jean-Benoit Morin & Abdelhalim Loucif & Mohammad Jahazi, 2023. "Influence of Spacers and Skid Sizes on Heat Treatment of Large Forgings within an Industrial Electric Furnace," Energies, MDPI, vol. 16(7), pages 1-18, March.
    11. Ghasemian, Masoud & Nejat, Amir, 2015. "Aero-acoustics prediction of a vertical axis wind turbine using Large Eddy Simulation and acoustic analogy," Energy, Elsevier, vol. 88(C), pages 711-717.
    12. Peng, H.Y. & Han, Z.D. & Liu, H.J. & Lin, K. & Lam, H.F., 2020. "Assessment and optimization of the power performance of twin vertical axis wind turbines via numerical simulations," Renewable Energy, Elsevier, vol. 147(P1), pages 43-54.
    13. Andreas Binder & Onkar Jadhav & Volker Mehrmann, 2021. "Error Analysis of a Model Order Reduction Framework for Financial Risk Analysis," Papers 2110.00774, arXiv.org.
    14. Cinzia Rainone & Danilo De Siero & Luigi Iuspa & Antonio Viviani & Giuseppe Pezzella, 2023. "A Numerical Procedure for Variable-Pitch Law Formulation of Vertical-Axis Wind Turbines," Energies, MDPI, vol. 16(1), pages 1-20, January.
    15. Daróczy, László & Janiga, Gábor & Thévenin, Dominique, 2016. "Analysis of the performance of a H-Darrieus rotor under uncertainty using Polynomial Chaos Expansion," Energy, Elsevier, vol. 113(C), pages 399-412.
    16. Chen, Jian & Yang, Hongxing & Yang, Mo & Xu, Hongtao, 2015. "The effect of the opening ratio and location on the performance of a novel vertical axis Darrieus turbine," Energy, Elsevier, vol. 89(C), pages 819-834.
    17. Seyedsaeed Tabatabaeikia & Nik Nazri Bin Nik-Ghazali & Wen Tong Chong & Behzad Shahizare & Ahmad Fazlizan & Alireza Esmaeilzadeh & Nima Izadyar, 2016. "A Comparative Computational Fluid Dynamics Study on an Innovative Exhaust Air Energy Recovery Wind Turbine Generator," Energies, MDPI, vol. 9(5), pages 1-19, May.
    18. Fang Feng & Guoqiang Tong & Yunfei Ma & Yan Li, 2021. "Numerical Simulation and Wind Tunnel Investigation on Static Characteristics of VAWT Rotor Starter with Lift-Drag Combined Structure," Energies, MDPI, vol. 14(19), pages 1-24, September.
    19. Zhu, Hongjun & Lin, Pengzhi & Pan, Qian, 2014. "A CFD (computational fluid dynamic) simulation for oil leakage from damaged submarine pipeline," Energy, Elsevier, vol. 64(C), pages 887-899.
    20. Chowdhury, Abdullah Mobin & Akimoto, Hiromichi & Hara, Yutaka, 2016. "Comparative CFD analysis of Vertical Axis Wind Turbine in upright and tilted configuration," Renewable Energy, Elsevier, vol. 85(C), pages 327-337.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:8:p:1568-:d:225837. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.