IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v36y2011i2p1265-1272.html
   My bibliography  Save this article

Efficiency analysis of radiative slab heating in a walking-beam-type reheating furnace

Author

Listed:
  • Han, Sang Heon
  • Chang, Daejun
  • Huh, Cheol

Abstract

The thermal efficiency of a reheating furnace was predicted by considering radiative heat transfer to the slabs and the furnace wall. The entire furnace was divided into fourteen sub-zones, and each sub-zone was assumed to be homogeneous in temperature distribution with one medium temperature and wall temperature, which were computed on the basis of the overall heat balance for all of the sub-zones. The thermal energy inflow, thermal energy outflow, heat generation by fuel combustion, heat loss by the skid system, and heat loss by radiation through the boundary of each sub-zone were considered to give the two temperatures of each sub-zone. The radiative heat transfer was solved by the FVM radiation method, and a blocked-off procedure was applied to the treatment of the slabs. The temperature field of a slab was calculated by solving the transient heat conduction equation with the boundary condition of impinging radiation heat flux from the hot combustion gas and furnace wall. Additionally, the slab heating characteristics and thermal behavior of the furnace were analyzed for various fuel feed conditions.

Suggested Citation

  • Han, Sang Heon & Chang, Daejun & Huh, Cheol, 2011. "Efficiency analysis of radiative slab heating in a walking-beam-type reheating furnace," Energy, Elsevier, vol. 36(2), pages 1265-1272.
  • Handle: RePEc:eee:energy:v:36:y:2011:i:2:p:1265-1272
    DOI: 10.1016/j.energy.2010.11.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544210006444
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2010.11.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ricardo S. Gomez & Túlio R. N. Porto & Hortência L. F. Magalhães & Gicelia Moreira & Anastácia M. M. C. N. André & Ruth B. F. Melo & Antonio G. B. Lima, 2019. "Natural Gas Intermittent Kiln for the Ceramic Industry: A Transient Thermal Analysis," Energies, MDPI, vol. 12(8), pages 1-29, April.
    2. Hajaliakbari, Nasrollah & Hassanpour, Saied, 2017. "Analysis of thermal energy performance in continuous annealing furnace," Applied Energy, Elsevier, vol. 206(C), pages 829-842.
    3. Il Hong Min & Seong-Gil Kang & Cheol Huh, 2018. "Instability Analysis of Supercritical CO 2 during Transportation and Injection in Carbon Capture and Storage Systems," Energies, MDPI, vol. 11(8), pages 1-19, August.
    4. Mirko Filipponi & Federico Rossi & Andrea Presciutti & Stefania De Ciantis & Beatrice Castellani & Ambro Carpinelli, 2016. "Thermal Analysis of an Industrial Furnace," Energies, MDPI, vol. 9(10), pages 1-13, October.
    5. Landfahrer, M. & Schluckner, C. & Prieler, R. & Gerhardter, H. & Zmek, T. & Klarner, J. & Hochenauer, C., 2019. "Development and application of a numerically efficient model describing a rotary hearth furnace using CFD," Energy, Elsevier, vol. 180(C), pages 79-89.
    6. Liu, H. & Saffaripour, M. & Mellin, P. & Grip, C.-E. & Yang, W. & Blasiak, W., 2014. "A thermodynamic study of hot syngas impurities in steel reheating furnaces – Corrosion and interaction with oxide scales," Energy, Elsevier, vol. 77(C), pages 352-361.
    7. Hadała, Beata & Malinowski, Zbigniew & Rywotycki, Marcin, 2017. "Energy losses from the furnace chamber walls during heating and heat treatment of heavy forgings," Energy, Elsevier, vol. 139(C), pages 298-314.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:36:y:2011:i:2:p:1265-1272. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.