IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i14p3655-d384897.html
   My bibliography  Save this article

Numerical Simulation of the Flow and Heat Transfer in an Electric Steel Tempering Furnace

Author

Listed:
  • Iván D. Palacio-Caro

    (Grupo de Materiales Avanzados y energía (MATyER), Facultad de Ingeniería, Instituto Tecnológico Metropolitano, Campus Fraternidad, Calle 54a No 30-1, Medellín 050013, Colombia)

  • Pedro N. Alvarado-Torres

    (Grupo de Materiales Avanzados y energía (MATyER), Facultad de Ingeniería, Instituto Tecnológico Metropolitano, Campus Fraternidad, Calle 54a No 30-1, Medellín 050013, Colombia)

  • Luis F. Cardona-Sepúlveda

    (Grupo de Materiales Avanzados y energía (MATyER), Facultad de Ingeniería, Instituto Tecnológico Metropolitano, Campus Fraternidad, Calle 54a No 30-1, Medellín 050013, Colombia)

Abstract

Heat treatments, such as steel tempering, are temperature-controlled processes. It allows ferrous steel to stabilize its structure after the heat treatment and quenching stages. The tempering temperature also determines the hardness of the steel, preferably to its optimum working strength. In a tempering furnace, a heat-resistant fan is commonly employed to generate moderate gas circulation to obtain adequate temperature homogeneity and heat transfer. Nevertheless, there is a tradeoff because the overall thermal efficiency is expected to reduce because of the high rotating speed of the fan. Therefore, this study numerically investigates the thermal efficiency changes of an electric tempering furnace due to changes in the rotating speed of the fan and the effects on temperature homogeneity and the heat transfer rate to the load. Heat losses through the walls were calculated from the external temperature measurement of the furnace. Four different speeds were simulated: 720, 990, 1350, and 1800 rpm. Thermal homogeneity was improved at higher rotating speeds; this is because the recirculation zone caused by the fan improved the flow mixing and the heat transfer. However, it was found that the thermal efficiency of the tempering furnace decreased as the rotating speed values increased. Therefore, these characteristics should be modulated to obtain a profit when controlling the rotating speed. For example, although thermal efficiency decreases by 20% when the rotating speed is doubled, the heat transfer rate to load is increased by up to 50%, which can be beneficial in decreasing the process of tempering times.

Suggested Citation

  • Iván D. Palacio-Caro & Pedro N. Alvarado-Torres & Luis F. Cardona-Sepúlveda, 2020. "Numerical Simulation of the Flow and Heat Transfer in an Electric Steel Tempering Furnace," Energies, MDPI, vol. 13(14), pages 1-22, July.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:14:p:3655-:d:384897
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/14/3655/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/14/3655/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yih-Liang Chan, David & Yang, Kuang-Han & Lee, Jenq-Daw & Hong, Gui-Bing, 2010. "The case study of furnace use and energy conservation in iron and steel industry," Energy, Elsevier, vol. 35(4), pages 1665-1670.
    2. Ricardo S. Gomez & Túlio R. N. Porto & Hortência L. F. Magalhães & Gicelia Moreira & Anastácia M. M. C. N. André & Ruth B. F. Melo & Antonio G. B. Lima, 2019. "Natural Gas Intermittent Kiln for the Ceramic Industry: A Transient Thermal Analysis," Energies, MDPI, vol. 12(8), pages 1-29, April.
    3. Hadała, Beata & Malinowski, Zbigniew & Rywotycki, Marcin, 2017. "Energy losses from the furnace chamber walls during heating and heat treatment of heavy forgings," Energy, Elsevier, vol. 139(C), pages 298-314.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sajad Mirzaei & Nima Bohlooli Arkhazloo & Farzad Bazdidi-Tehrani & Jean-Benoit Morin & Abdelhalim Loucif & Mohammad Jahazi, 2023. "Influence of Spacers and Skid Sizes on Heat Treatment of Large Forgings within an Industrial Electric Furnace," Energies, MDPI, vol. 16(7), pages 1-18, March.
    2. Piotr Michalak, 2021. "Experimental and Theoretical Study on the Internal Convective and Radiative Heat Transfer Coefficients for a Vertical Wall in a Residential Building," Energies, MDPI, vol. 14(18), pages 1-22, September.
    3. Mikhail A. Sheremet, 2021. "Numerical Simulation of Convective-Radiative Heat Transfer," Energies, MDPI, vol. 14(17), pages 1-3, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sajad Mirzaei & Nima Bohlooli Arkhazloo & Farzad Bazdidi-Tehrani & Jean-Benoit Morin & Abdelhalim Loucif & Mohammad Jahazi, 2023. "Influence of Spacers and Skid Sizes on Heat Treatment of Large Forgings within an Industrial Electric Furnace," Energies, MDPI, vol. 16(7), pages 1-18, March.
    2. Václav Kočí & Lenka Scheinherrová & Jiří Maděra & Martin Keppert & Zbigniew Suchorab & Grzegorz Łagód & Robert Černý, 2020. "Experimental and Computational Study of Thermal Processes in Red Clays Exposed to High Temperatures," Energies, MDPI, vol. 13(9), pages 1-15, May.
    3. Elena Stefana & Paola Cocca & Filippo Marciano & Diana Rossi & Giuseppe Tomasoni, 2019. "A Review of Energy and Environmental Management Practices in Cast Iron Foundries to Increase Sustainability," Sustainability, MDPI, vol. 11(24), pages 1-18, December.
    4. Miguel Castro Oliveira & Muriel Iten & Pedro L. Cruz & Helena Monteiro, 2020. "Review on Energy Efficiency Progresses, Technologies and Strategies in the Ceramic Sector Focusing on Waste Heat Recovery," Energies, MDPI, vol. 13(22), pages 1-24, November.
    5. Liu, H. & Saffaripour, M. & Mellin, P. & Grip, C.-E. & Yang, W. & Blasiak, W., 2014. "A thermodynamic study of hot syngas impurities in steel reheating furnaces – Corrosion and interaction with oxide scales," Energy, Elsevier, vol. 77(C), pages 352-361.
    6. Hong, Gui-Bing & Ma, Chih-Ming & Chen, Hua-Wei & Chuang, Kai-Jen & Chang, Chang-Tang & Su, Te-Li, 2011. "Energy flow analysis in pulp and paper industry," Energy, Elsevier, vol. 36(5), pages 3063-3068.
    7. Hong, Gui-Bing & Pan, Tze-Chin & Chan, David Yih-Liang & Liu, I-Hung, 2020. "Bottom-up analysis of industrial waste heat potential in Taiwan," Energy, Elsevier, vol. 198(C).
    8. Liying Wang & Junya Wang & Pengxia Shen & Shangqing Liu & Shuwei Zhang, 2023. "Low-Carbon Travel Behavior in Daily Residence and Tourism Destination: Based on TPB-ABC Integrated Model," Sustainability, MDPI, vol. 15(19), pages 1-18, September.
    9. Hong, Gui-Bing & Su, Te-Li & Lee, Jenq-Daw & Hsu, Tsung-Chi & Chen, Hua-Wei, 2010. "Energy conservation potential in Taiwanese textile industry," Energy Policy, Elsevier, vol. 38(11), pages 7048-7053, November.
    10. Bai, Yin & Liu, Yong, 2013. "An exploration of residents’ low-carbon awareness and behavior in Tianjin, China," Energy Policy, Elsevier, vol. 61(C), pages 1261-1270.
    11. Thompson, Shirley & Si, Minxing, 2014. "Strategic analysis of energy efficiency projects: Case study of a steel mill in Manitoba," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 814-819.
    12. Lin, Boqiang & Wu, Ya & Zhang, Li, 2011. "Estimates of the potential for energy conservation in the Chinese steel industry," Energy Policy, Elsevier, vol. 39(6), pages 3680-3689, June.
    13. Leonardo Leoni & Alessandra Cantini & Filippo De Carlo & Marcello Salvio & Chiara Martini & Claudia Toro & Fabrizio Martini, 2021. "Energy-Saving Technology Opportunities and Investments of the Italian Foundry Industry," Energies, MDPI, vol. 14(24), pages 1-29, December.
    14. Lin, Hsin-Chiu & Chan, David Yih-Liang & Lin, Wei-Chun & Hsu, Chung-Hsuan & Hong, Gui-Bing, 2014. "Status of energy conservation in Taiwan's pulp and paper industry," Energy, Elsevier, vol. 73(C), pages 680-685.
    15. Ma, Chih-Ming & Chen, Ming-Hue & Hong, Gui-Bing, 2012. "Energy conservation status in Taiwanese food industry," Energy Policy, Elsevier, vol. 50(C), pages 458-463.
    16. Yong Liu & Jin Liu & Yunpeng Su, 2021. "Low-Carbon Awareness and Behaviors: Effects of Exposure to Climate Change Impact Photographs," SAGE Open, , vol. 11(3), pages 21582440211, July.
    17. Lu, Shyi-Min & Lu, Ching & Tseng, Kuo-Tung & Chen, Falin & Chen, Chen-Liang, 2013. "Energy-saving potential of the industrial sector of Taiwan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 674-683.
    18. A.M. Vasconcelos da Silva & J.M.P.Q. Delgado & A.S. Guimarães & W.M.P. Barbosa de Lima & R. Soares Gomez & R. Pereira de Farias & E. Santana de Lima & A.G. Barbosa de Lima, 2020. "Industrial Ceramic Blocks for Buildings: Clay Characterization and Drying Experimental Study," Energies, MDPI, vol. 13(11), pages 1-22, June.
    19. Su, Te-Li & Chan, David Yih-Liang & Hung, Ching-Yuan & Hong, Gui-Bing, 2013. "The status of energy conservation in Taiwan's cement industry," Energy Policy, Elsevier, vol. 60(C), pages 481-486.
    20. Kaplowitz, Michael D. & Thorp, Laurie & Coleman, Kayla & Kwame Yeboah, Felix, 2012. "Energy conservation attitudes, knowledge, and behaviors in science laboratories," Energy Policy, Elsevier, vol. 50(C), pages 581-591.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:14:p:3655-:d:384897. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.