IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i7p862-d102913.html
   My bibliography  Save this article

Complementary Power Control for Doubly Fed Induction Generator-Based Tidal Stream Turbine Generation Plants

Author

Listed:
  • Khaoula Ghefiri

    (Laboratory of Research in Automatic Control—LA.R.A, National Engineering School of Tunis (ENIT), University of Tunis El Manar (UTM), BP 37, Le Belvédère, 1002 Tunis, Tunisia
    Automatic Control Group—ACG, Department of Automatic Control and Systems Engineering, Engineering School of Bilbao, University of the Basque Country (UPV/EHU), 48012 Bilbao, Spain)

  • Soufiene Bouallègue

    (Laboratory of Research in Automatic Control—LA.R.A, National Engineering School of Tunis (ENIT), University of Tunis El Manar (UTM), BP 37, Le Belvédère, 1002 Tunis, Tunisia)

  • Izaskun Garrido

    (Automatic Control Group—ACG, Department of Automatic Control and Systems Engineering, Engineering School of Bilbao, University of the Basque Country (UPV/EHU), 48012 Bilbao, Spain)

  • Aitor J. Garrido

    (Automatic Control Group—ACG, Department of Automatic Control and Systems Engineering, Engineering School of Bilbao, University of the Basque Country (UPV/EHU), 48012 Bilbao, Spain)

  • Joseph Haggège

    (Laboratory of Research in Automatic Control—LA.R.A, National Engineering School of Tunis (ENIT), University of Tunis El Manar (UTM), BP 37, Le Belvédère, 1002 Tunis, Tunisia)

Abstract

The latest forecasts on the upcoming effects of climate change are leading to a change in the worldwide power production model, with governments promoting clean and renewable energies, as is the case of tidal energy. Nevertheless, it is still necessary to improve the efficiency and lower the costs of the involved processes in order to achieve a Levelized Cost of Energy (LCoE) that allows these devices to be commercially competitive. In this context, this paper presents a novel complementary control strategy aimed to maximize the output power of a Tidal Stream Turbine (TST) composed of a hydrodynamic turbine, a Doubly-Fed Induction Generator (DFIG) and a back-to-back power converter. In particular, a global control scheme that supervises the switching between the two operation modes is developed and implemented. When the tidal speed is low enough, the plant operates in variable speed mode, where the system is regulated so that the turbo-generator module works in maximum power extraction mode for each given tidal velocity. For this purpose, the proposed back-to-back converter makes use of the field-oriented control in both the rotor side and grid side converters, so that a maximum power point tracking-based rotational speed control is applied in the Rotor Side Converter (RSC) to obtain the maximum power output. Analogously, when the system operates in power limitation mode, a pitch angle control is used to limit the power captured in the case of high tidal speeds. Both control schemes are then coordinated within a novel complementary control strategy. The results show an excellent performance of the system, affording maximum power extraction regardless of the tidal stream input.

Suggested Citation

  • Khaoula Ghefiri & Soufiene Bouallègue & Izaskun Garrido & Aitor J. Garrido & Joseph Haggège, 2017. "Complementary Power Control for Doubly Fed Induction Generator-Based Tidal Stream Turbine Generation Plants," Energies, MDPI, vol. 10(7), pages 1-23, June.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:7:p:862-:d:102913
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/7/862/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/7/862/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Myers, L. & Bahaj, A.S., 2006. "Power output performance characteristics of a horizontal axis marine current turbine," Renewable Energy, Elsevier, vol. 31(2), pages 197-208.
    2. Bryden, Ian G. & Couch, Scott J., 2006. "ME1—marine energy extraction: tidal resource analysis," Renewable Energy, Elsevier, vol. 31(2), pages 133-139.
    3. Fernández, Luis M. & Jurado, Francisco & Saenz, José Ramón, 2008. "Aggregated dynamic model for wind farms with doubly fed induction generator wind turbines," Renewable Energy, Elsevier, vol. 33(1), pages 129-140.
    4. Alberdi, Mikel & Amundarain, Modesto & Garrido, Aitor & Garrido, Izaskun, 2012. "Neural control for voltage dips ride-through of oscillating water column-based wave energy converter equipped with doubly-fed induction generator," Renewable Energy, Elsevier, vol. 48(C), pages 16-26.
    5. Kirke, B.K. & Lazauskas, L., 2011. "Limitations of fixed pitch Darrieus hydrokinetic turbines and the challenge of variable pitch," Renewable Energy, Elsevier, vol. 36(3), pages 893-897.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khaoula Ghefiri & Aitor J. Garrido & Eugen Rusu & Soufiene Bouallègue & Joseph Haggège & Izaskun Garrido, 2018. "Fuzzy Supervision Based-Pitch Angle Control of a Tidal Stream Generator for a Disturbed Tidal Input," Energies, MDPI, vol. 11(11), pages 1-21, November.
    2. Ladislas Mutunda Kangaji & Lagouge Tartibu & Pitshou N. Bokoro, 2023. "Modelling and Performance Analysis of a Tidal Current Turbine Connected to the Grid Using an Inductance (LCL) Filter," Energies, MDPI, vol. 16(16), pages 1-23, August.
    3. Silva, R.N. & Nunes, M.M. & Oliveira, F.L. & Oliveira, T.F. & Brasil, A.C.P. & Pinto, M.S.S., 2023. "Dynamical analysis of a novel hybrid oceanic tidal-wave energy converter system," Energy, Elsevier, vol. 263(PD).
    4. Min Lu & Yu Chen & Debin Zhang & Jingyuan Su & Yong Kang, 2019. "Virtual Synchronous Control Based on Control Winding Orientation for Brushless Doubly Fed Induction Generator (BDFIG) Wind Turbines Under Symmetrical Grid Faults," Energies, MDPI, vol. 12(2), pages 1-12, January.
    5. Tingting Cai & Sutong Liu & Gangui Yan & Hongbo Liu, 2019. "Analysis of Doubly Fed Induction Generators Participating in Continuous Frequency Regulation with Different Wind Speeds Considering Regulation Power Constraints," Energies, MDPI, vol. 12(4), pages 1-20, February.
    6. Khaoula Ghefiri & Izaskun Garrido & Soufiene Bouallègue & Joseph Haggège & Aitor J. Garrido, 2018. "Hybrid Neural Fuzzy Design-Based Rotational Speed Control of a Tidal Stream Generator Plant," Sustainability, MDPI, vol. 10(10), pages 1-26, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khaoula Ghefiri & Aitor J. Garrido & Eugen Rusu & Soufiene Bouallègue & Joseph Haggège & Izaskun Garrido, 2018. "Fuzzy Supervision Based-Pitch Angle Control of a Tidal Stream Generator for a Disturbed Tidal Input," Energies, MDPI, vol. 11(11), pages 1-21, November.
    2. Hussain, Akhtar & Arif, Syed Muhammad & Aslam, Muhammad, 2017. "Emerging renewable and sustainable energy technologies: State of the art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 12-28.
    3. Khaoula Ghefiri & Izaskun Garrido & Soufiene Bouallègue & Joseph Haggège & Aitor J. Garrido, 2018. "Hybrid Neural Fuzzy Design-Based Rotational Speed Control of a Tidal Stream Generator Plant," Sustainability, MDPI, vol. 10(10), pages 1-26, October.
    4. Hammar, Linus & Ehnberg, Jimmy & Mavume, Alberto & Francisco, Francisco & Molander, Sverker, 2012. "Simplified site-screening method for micro tidal current turbines applied in Mozambique," Renewable Energy, Elsevier, vol. 44(C), pages 414-422.
    5. Nash, S. & Phoenix, A., 2017. "A review of the current understanding of the hydro-environmental impacts of energy removal by tidal turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 648-662.
    6. Pasta, Edoardo & Faedo, Nicolás & Mattiazzo, Giuliana & Ringwood, John V., 2023. "Towards data-driven and data-based control of wave energy systems: Classification, overview, and critical assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    7. Eva Segura & Rafael Morales & José A. Somolinos, 2019. "Increasing the Competitiveness of Tidal Systems by Means of the Improvement of Installation and Maintenance Maneuvers in First Generation Tidal Energy Converters—An Economic Argumentation," Energies, MDPI, vol. 12(13), pages 1-27, June.
    8. Liu, Hong-wei & Ma, Shun & Li, Wei & Gu, Hai-gang & Lin, Yong-gang & Sun, Xiao-jing, 2011. "A review on the development of tidal current energy in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1141-1146, February.
    9. Hand, Brian & Kelly, Ger & Cashman, Andrew, 2021. "Aerodynamic design and performance parameters of a lift-type vertical axis wind turbine: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    10. Chen, J. & Yang, H.X. & Liu, C.P. & Lau, C.H. & Lo, M., 2013. "A novel vertical axis water turbine for power generation from water pipelines," Energy, Elsevier, vol. 54(C), pages 184-193.
    11. Ozkop, Emre & Altas, Ismail H., 2017. "Control, power and electrical components in wave energy conversion systems: A review of the technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 106-115.
    12. Wilberforce, Tabbi & El Hassan, Zaki & Durrant, A. & Thompson, J. & Soudan, Bassel & Olabi, A.G., 2019. "Overview of ocean power technology," Energy, Elsevier, vol. 175(C), pages 165-181.
    13. Sangiuliano, Stephen Joseph, 2017. "Turning of the tides: Assessing the international implementation of tidal current turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 971-989.
    14. Goude, Anders & Bülow, Fredrik, 2013. "Robust VAWT control system evaluation by coupled aerodynamic and electrical simulations," Renewable Energy, Elsevier, vol. 59(C), pages 193-201.
    15. de Jesus Henriques, Tiago A. & Hedges, Terry S. & Owen, Ieuan & Poole, Robert J., 2016. "The influence of blade pitch angle on the performance of a model horizontal axis tidal stream turbine operating under wave–current interaction," Energy, Elsevier, vol. 102(C), pages 166-175.
    16. María José Suárez-López & Rodolfo Espina-Valdés & Víctor Manuel Fernández Pacheco & Antonio Navarro Manso & Eduardo Blanco-Marigorta & Eduardo Álvarez-Álvarez, 2019. "A Review of Software Tools to Study the Energetic Potential of Tidal Currents," Energies, MDPI, vol. 12(9), pages 1-19, May.
    17. Pierre-Luc Delafin & François Deniset & Jacques André Astolfi & Frédéric Hauville, 2021. "Performance Improvement of a Darrieus Tidal Turbine with Active Variable Pitch," Energies, MDPI, vol. 14(3), pages 1-18, January.
    18. Alvarez, Eduardo Alvarez & Rico-Secades, Manuel & Suárez, Daniel Fernández & Gutiérrez-Trashorras, Antonio J. & Fernández-Francos, Joaquín, 2016. "Obtaining energy from tidal microturbines: A practical example in the Nalón River," Applied Energy, Elsevier, vol. 183(C), pages 100-112.
    19. Guillaud, N. & Balarac, G. & Goncalvès, E. & Zanette, J., 2020. "Large Eddy Simulations on Vertical Axis Hydrokinetic Turbines - Power coefficient analysis for various solidities," Renewable Energy, Elsevier, vol. 147(P1), pages 473-486.
    20. Papini, Guglielmo & Faedo, Nicolás & Mattiazzo, Giuliana, 2024. "Fault diagnosis and fault-tolerant control in wave energy: A perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:7:p:862-:d:102913. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.