IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i19p11106-d651680.html
   My bibliography  Save this article

Global Maximum Power Point Tracking of Solar Photovoltaic Strings under Partial Shading Conditions Using Cat Swarm Optimization Technique

Author

Listed:
  • T. Nagadurga

    (Department of Electrical and Electronics Engineering, University College of Engineering, Jawaharlal Nehru Technological University, Kakinada 533003, India
    Department of Electrical and Electronics Engineering, Lakireddy Bali Reddy College of Engineering, Mylavaram 521230, India)

  • P. V. R. L. Narasimham

    (Department of Electrical and Electronics Engineering, Velagapudi Ramakrishna Siddhartha Engineering College, Kanuru 520007, India)

  • V. S. Vakula

    (Department of Electrical and Electronics Engineering, College of Engineering, Jawaharlal Nehru Technological University—JNTUK, Vizianagram 535003, India)

Abstract

The power versus voltage curves of solar photovoltaic panels form several peaks under fractional (partial) shading conditions. Traditional maximum output power tracking (MPPT) techniques fail to achieve global peak power at the output terminals. The proposed Cat Swarm Optimization (CSO) method intends to apply MPPT techniques to extract the global maxima from the shaded photovoltaic systems. CSO is a robust and powerful metaheuristic swarm-based optimization technique that has received very positive feedback since its emergence. It has been used to solve a variety of optimization issues, and several variations have been developed. The CSO-based maximum power tracking technique can successfully tackle two major issues of the PV system during shading conditions, including random oscillations caused by conventional tracking techniques and power loss. The proposed techniques have been extensively used in comparison to conventional algorithms like the Perturb and the Observe (P and O) technique. The main objective is to achieve a tracking speed for extracting the Maximum Power Point (MPP) from the solar Photovoltaic (PV) system under fractional shading conditions by using CSO. Modeling of the solar photovoltaic array in the MATLAB/Simulink platform comprises a photovoltaic module, a switching converter (Boost Converter), and the load. The PSO and CSO techniques are applied to the PV module under different weather conditions. The PSO algorithm is compared to the CSO algorithm according to simulation results, revealing that the CSO algorithm can provide better accuracy and a faster tracking speed.

Suggested Citation

  • T. Nagadurga & P. V. R. L. Narasimham & V. S. Vakula, 2021. "Global Maximum Power Point Tracking of Solar Photovoltaic Strings under Partial Shading Conditions Using Cat Swarm Optimization Technique," Sustainability, MDPI, vol. 13(19), pages 1-20, October.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:19:p:11106-:d:651680
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/19/11106/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/19/11106/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dileep, G. & Singh, S.N., 2015. "Maximum power point tracking of solar photovoltaic system using modified perturbation and observation method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 109-129.
    2. Chao, Kuei-Hsiang & Lin, Yu-Sheng & Lai, Uei-Dar, 2015. "Improved particle swarm optimization for maximum power point tracking in photovoltaic module arrays," Applied Energy, Elsevier, vol. 158(C), pages 609-618.
    3. Shivashankar, S. & Mekhilef, Saad & Mokhlis, Hazlie & Karimi, M., 2016. "Mitigating methods of power fluctuation of photovoltaic (PV) sources – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1170-1184.
    4. Sundareswaran, K. & Vignesh kumar, V. & Palani, S., 2015. "Application of a combined particle swarm optimization and perturb and observe method for MPPT in PV systems under partial shading conditions," Renewable Energy, Elsevier, vol. 75(C), pages 308-317.
    5. Ali M Humada & Mojgan Hojabri & Mohd Herwan Bin Sulaiman & Hussein M Hamada & Mushtaq N Ahmed, 2016. "Photovoltaic Grid-Connected Modeling and Characterization Based on Experimental Results," PLOS ONE, Public Library of Science, vol. 11(4), pages 1-13, April.
    6. Ahmed, Jubaer & Salam, Zainal, 2015. "A critical evaluation on maximum power point tracking methods for partial shading in PV systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 933-953.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rezk, Hegazy & Fathy, Ahmed & Abdelaziz, Almoataz Y., 2017. "A comparison of different global MPPT techniques based on meta-heuristic algorithms for photovoltaic system subjected to partial shading conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 377-386.
    2. Pal, Rudra Sankar & Mukherjee, V., 2020. "Metaheuristic based comparative MPPT methods for photovoltaic technology under partial shading condition," Energy, Elsevier, vol. 212(C).
    3. Belhachat, Faiza & Larbes, Cherif, 2017. "Global maximum power point tracking based on ANFIS approach for PV array configurations under partial shading conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 875-889.
    4. Saud Alotaibi & Ahmed Darwish, 2021. "Modular Multilevel Converters for Large-Scale Grid-Connected Photovoltaic Systems: A Review," Energies, MDPI, vol. 14(19), pages 1-30, September.
    5. Ali M. Eltamaly & Hassan M. H. Farh & Mamdooh S. Al Saud, 2019. "Impact of PSO Reinitialization on the Accuracy of Dynamic Global Maximum Power Detection of Variant Partially Shaded PV Systems," Sustainability, MDPI, vol. 11(7), pages 1-14, April.
    6. Çelik, Özgür & Teke, Ahmet & Tan, Adnan, 2018. "Overview of micro-inverters as a challenging technology in photovoltaic applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3191-3206.
    7. Kermadi, Mostefa & Berkouk, El Madjid, 2017. "Artificial intelligence-based maximum power point tracking controllers for Photovoltaic systems: Comparative study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 369-386.
    8. Yinxiao Zhu & Moon Keun Kim & Huiqing Wen, 2018. "Simulation and Analysis of Perturbation and Observation-Based Self-Adaptable Step Size Maximum Power Point Tracking Strategy with Low Power Loss for Photovoltaics," Energies, MDPI, vol. 12(1), pages 1-20, December.
    9. Adel O. Baatiah & Ali M. Eltamaly & Majed A. Alotaibi, 2023. "Improving Photovoltaic MPPT Performance through PSO Dynamic Swarm Size Reduction," Energies, MDPI, vol. 16(18), pages 1-15, September.
    10. Joshi, Puneet & Arora, Sudha, 2017. "Maximum power point tracking methodologies for solar PV systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1154-1177.
    11. Belhaouas, N. & Cheikh, M.-S. Ait & Agathoklis, P. & Oularbi, M.-R. & Amrouche, B. & Sedraoui, K. & Djilali, N., 2017. "PV array power output maximization under partial shading using new shifted PV array arrangements," Applied Energy, Elsevier, vol. 187(C), pages 326-337.
    12. Ramli, Mohd Zulkifli & Salam, Zainal, 2019. "Performance evaluation of dc power optimizer (DCPO) for photovoltaic (PV) system during partial shading," Renewable Energy, Elsevier, vol. 139(C), pages 1336-1354.
    13. Li, Guiqiang & Jin, Yi & Akram, M.W. & Chen, Xiao & Ji, Jie, 2018. "Application of bio-inspired algorithms in maximum power point tracking for PV systems under partial shading conditions – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 840-873.
    14. Cabrera-Tobar, Ana & Bullich-Massagué, Eduard & Aragüés-Peñalba, Mònica & Gomis-Bellmunt, Oriol, 2016. "Review of advanced grid requirements for the integration of large scale photovoltaic power plants in the transmission system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 971-987.
    15. Mohapatra, Alivarani & Nayak, Byamakesh & Das, Priti & Mohanty, Kanungo Barada, 2017. "A review on MPPT techniques of PV system under partial shading condition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 854-867.
    16. Wang, Zhenyu & Zhang, Yunpeng & Li, Guorong & Zhang, Jinlong & Zhou, Hai & Wu, Ji, 2024. "A novel solar irradiance forecasting method based on multi-physical process of atmosphere optics and LSTM-BP model," Renewable Energy, Elsevier, vol. 226(C).
    17. Camilo, Jones C. & Guedes, Tatiana & Fernandes, Darlan A. & Melo, J.D. & Costa, F.F. & Sguarezi Filho, Alfeu J., 2019. "A maximum power point tracking for photovoltaic systems based on Monod equation," Renewable Energy, Elsevier, vol. 130(C), pages 428-438.
    18. Long-Yi Chang & Yi-Nung Chung & Kuei-Hsiang Chao & Jia-Jing Kao, 2018. "Smart Global Maximum Power Point Tracking Controller of Photovoltaic Module Arrays," Energies, MDPI, vol. 11(3), pages 1-16, March.
    19. Arévalo, Paul & Benavides, Dario & Tostado-Véliz, Marcos & Aguado, José A. & Jurado, Francisco, 2023. "Smart monitoring method for photovoltaic systems and failure control based on power smoothing techniques," Renewable Energy, Elsevier, vol. 205(C), pages 366-383.
    20. Syed Zahurul Islam & Mohammad Lutfi Othman & Muhammad Saufi & Rosli Omar & Arash Toudeshki & Syed Zahidul Islam, 2020. "Photovoltaic modules evaluation and dry-season energy yield prediction model for NEM in Malaysia," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-25, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:19:p:11106-:d:651680. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.