Nano-engineering enabled heat pipe battery: A powerful heat transfer infrastructure with capability of power generation
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2023.121520
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Huang, Qionghai & Shao, Shuangquan & Zhang, Hainan & Tian, Changqing, 2019. "Development and composition of a data center heat recovery system and evaluation of annual operation performance," Energy, Elsevier, vol. 189(C).
- Marshall, Z.M. & Duquette, J., 2022. "A techno-economic evaluation of low global warming potential heat pump assisted organic Rankine cycle systems for data center waste heat recovery," Energy, Elsevier, vol. 242(C).
- Ebrahimi, Khosrow & Jones, Gerard F. & Fleischer, Amy S., 2014. "A review of data center cooling technology, operating conditions and the corresponding low-grade waste heat recovery opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 622-638.
- Zhonglin Bu & Xinyue Zhang & Yixin Hu & Zhiwei Chen & Siqi Lin & Wen Li & Chong Xiao & Yanzhong Pei, 2022. "A record thermoelectric efficiency in tellurium-free modules for low-grade waste heat recovery," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
- Koot, Martijn & Wijnhoven, Fons, 2021. "Usage impact on data center electricity needs: A system dynamic forecasting model," Applied Energy, Elsevier, vol. 291(C).
- Zhou, Guohui & Li, Ji & Jia, Zizhou, 2019. "Power-saving exploration for high-end ultra-slim laptop computers with miniature loop heat pipe cooling module," Applied Energy, Elsevier, vol. 239(C), pages 859-875.
- Srimuang, W. & Amatachaya, P., 2012. "A review of the applications of heat pipe heat exchangers for heat recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4303-4315.
- Imran, Muhammad & Usman, Muhammad & Park, Byung-Sik & Lee, Dong-Hyun, 2016. "Volumetric expanders for low grade heat and waste heat recovery applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1090-1109.
- Forman, Clemens & Muritala, Ibrahim Kolawole & Pardemann, Robert & Meyer, Bernd, 2016. "Estimating the global waste heat potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1568-1579.
- Pingjun Ying & Ran He & Jun Mao & Qihao Zhang & Heiko Reith & Jiehe Sui & Zhifeng Ren & Kornelius Nielsch & Gabi Schierning, 2021. "Towards tellurium-free thermoelectric modules for power generation from low-grade heat," Nature Communications, Nature, vol. 12(1), pages 1-6, December.
- van de Bor, D.M. & Infante Ferreira, C.A. & Kiss, Anton A., 2015. "Low grade waste heat recovery using heat pumps and power cycles," Energy, Elsevier, vol. 89(C), pages 864-873.
- Habibi Khalaj, Ali & Halgamuge, Saman K., 2017. "A Review on efficient thermal management of air- and liquid-cooled data centers: From chip to the cooling system," Applied Energy, Elsevier, vol. 205(C), pages 1165-1188.
- Wang, Xinyue & Liu, Yang & Tian, Tong & Li, Ji, 2022. "Directly air-cooled compact looped heat pipe module for high power servers with extremely low power usage effectiveness," Applied Energy, Elsevier, vol. 319(C).
- Anthony P. Straub & Ngai Yin Yip & Shihong Lin & Jongho Lee & Menachem Elimelech, 2016. "Harvesting low-grade heat energy using thermo-osmotic vapour transport through nanoporous membranes," Nature Energy, Nature, vol. 1(7), pages 1-6, July.
- Cho, Jinkyun & Kim, Yundeok, 2016. "Improving energy efficiency of dedicated cooling system and its contribution towards meeting an energy-optimized data center," Applied Energy, Elsevier, vol. 165(C), pages 967-982.
- Ebrahimi, Khosrow & Jones, Gerard F. & Fleischer, Amy S., 2015. "Thermo-economic analysis of steady state waste heat recovery in data centers using absorption refrigeration," Applied Energy, Elsevier, vol. 139(C), pages 384-397.
- Chen, Huijuan & Goswami, D. Yogi & Stefanakos, Elias K., 2010. "A review of thermodynamic cycles and working fluids for the conversion of low-grade heat," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3059-3067, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yuan, Xiaolei & Liang, Yumin & Hu, Xinyi & Xu, Yizhe & Chen, Yongbao & Kosonen, Risto, 2023. "Waste heat recoveries in data centers: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
- Vesterlund, Mattias & Borisová, Stanislava & Emilsson, Ellinor, 2024. "Data center excess heat for mealworm farming, an applied analysis for sustainable protein production," Applied Energy, Elsevier, vol. 353(PA).
- Yang, Wei & Bao, Jingjing & Liu, Hongtao & Zhang, Jun & Guo, Lin, 2023. "Low-grade heat to hydrogen: Current technologies, challenges and prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
- Cristina Ramos Cáceres & Suzanna Törnroth & Mattias Vesterlund & Andreas Johansson & Marcus Sandberg, 2022. "Data-Center Farming: Exploring the Potential of Industrial Symbiosis in a Subarctic Region," Sustainability, MDPI, vol. 14(5), pages 1-23, February.
- Zhou, Haojie & Tian, Tong & Wang, Xinyue & Li, Ji, 2023. "Combining looped heat pipe and thermoelectric generator module to pursue data center servers with possible power usage effectiveness less than 1," Applied Energy, Elsevier, vol. 332(C).
- Sijun Xu & Hua Zhang & Zilong Wang, 2023. "Thermal Management and Energy Consumption in Air, Liquid, and Free Cooling Systems for Data Centers: A Review," Energies, MDPI, vol. 16(3), pages 1-25, January.
- Huang, Pei & Copertaro, Benedetta & Zhang, Xingxing & Shen, Jingchun & Löfgren, Isabelle & Rönnelid, Mats & Fahlen, Jan & Andersson, Dan & Svanfeldt, Mikael, 2020. "A review of data centers as prosumers in district energy systems: Renewable energy integration and waste heat reuse for district heating," Applied Energy, Elsevier, vol. 258(C).
- Cheng Liu & Hang Yu, 2021. "Evaluation and Optimization of a Two-Phase Liquid-Immersion Cooling System for Data Centers," Energies, MDPI, vol. 14(5), pages 1-21, March.
- Wang, Xinyue & Liu, Yang & Tian, Tong & Li, Ji, 2022. "Directly air-cooled compact looped heat pipe module for high power servers with extremely low power usage effectiveness," Applied Energy, Elsevier, vol. 319(C).
- Li, Jian & Jurasz, Jakub & Li, Hailong & Tao, Wen-Quan & Duan, Yuanyuan & Yan, Jinyue, 2020. "A new indicator for a fair comparison on the energy performance of data centers," Applied Energy, Elsevier, vol. 276(C).
- Nikunj Gangar & Sandro Macchietto & Christos N. Markides, 2020. "Recovery and Utilization of Low-Grade Waste Heat in the Oil-Refining Industry Using Heat Engines and Heat Pumps: An International Technoeconomic Comparison," Energies, MDPI, vol. 13(10), pages 1-29, May.
- Leyla Amiri & Edris Madadian & Navid Bahrani & Seyed Ali Ghoreishi-Madiseh, 2021. "Techno-Economic Analysis of Waste Heat Utilization in Data Centers: Application of Absorption Chiller Systems," Energies, MDPI, vol. 14(9), pages 1-11, April.
- Braimakis, Konstantinos & Karellas, Sotirios, 2017. "Integrated thermoeconomic optimization of standard and regenerative ORC for different heat source types and capacities," Energy, Elsevier, vol. 121(C), pages 570-598.
- Xu, Haowei & Zhang, Qiang & Yi, Longbing & Huang, Shaolin & Yang, Hao & Li, Yanan & Guo, Zhe & Hu, Haoyang & Sun, Peng & Tan, Xiaojian & Liu, Guo-qiang & Song, Kun & Jiang, Jun, 2022. "High performance of Bi2Te3-based thermoelectric generator owing to pressure in fabrication process," Applied Energy, Elsevier, vol. 326(C).
- Borkowski, Mateusz & Piłat, Adam Krzysztof, 2022. "Customized data center cooling system operating at significant outdoor temperature fluctuations," Applied Energy, Elsevier, vol. 306(PB).
- Wang, Dabiao & Ma, Yuezheng & Tian, Ran & Duan, Jie & Hu, Busong & Shi, Lin, 2018. "Thermodynamic evaluation of an ORC system with a Low Pressure Saturated Steam heat source," Energy, Elsevier, vol. 149(C), pages 375-385.
- Cho, Jinkyun, 2024. "Optimal supply air temperature with respect to data center operational stability and energy efficiency in a row-based cooling system under fault conditions," Energy, Elsevier, vol. 288(C).
- Deymi-Dashtebayaz, Mahdi & Norani, Marziye, 2021. "Sustainability assessment and emergy analysis of employing the CCHP system under two different scenarios in a data center," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
- Li, Weiwei & Qian, Tong & Zhang, Yin & Shen, Yueqing & Wu, Chenghu & Tang, Wenhu, 2023. "Distributionally robust chance-constrained planning for regional integrated electricity–heat systems with data centers considering wind power uncertainty," Applied Energy, Elsevier, vol. 336(C).
- Zhang, Yingbo & Shan, Kui & Li, Xiuming & Li, Hangxin & Wang, Shengwei, 2023. "Research and Technologies for next-generation high-temperature data centers – State-of-the-arts and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
More about this item
Keywords
Looped heat pipe battery; Low-grade waste heat recovery; Passive Rankine cycle; Power generation; Electronics cooling;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:348:y:2023:i:c:s030626192300884x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.