IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i10p1863-d231617.html
   My bibliography  Save this article

Active Management of Heat Customers Towards Lower District Heating Return Water Temperature

Author

Listed:
  • Tommy Rosén

    (Division of Energy Systems, Linköping University, SE-581 83 Linköping, Sweden)

  • Louise Ödlund

    (Division of Energy Systems, Linköping University, SE-581 83 Linköping, Sweden
    Formerly Trygg.)

Abstract

The traditional way of managing the supply and return water temperatures in a district heating system (DHS) is by controlling the supply water temperature. The return water temperature then becomes a passive result that reflects the overall energy efficiency of the DHS. A DHS with many poorly functioning district heating centrals will create a high return water temperature, and the energy efficiency of the DHS will be affected negatively in several ways (e.g., lower efficiency of the flue gas condenser, higher heat losses in pipes, and lower electricity production for a DHS with combined heat and power (CHP)). With a strategic introduction of low-grade heat customers, the return water temperature can be lowered and, to some extent, controlled. With the heat customers connected in parallel, which is the traditional setup, return water temperatures can only be lowered at the same rate as the heat customers are improved. The active management of some customers can lower the return water temperatures faster and, in the long run, lead to better controlled return water temperatures. Active management is defined here as an adjustment of a domestic heating system in order to improve DHS efficiency without affecting the heating service for the individual building. The opposite can be described as passive management, where heat customers are connected to the DHS in a standardized manner, without taking the overall DHS efficiency into consideration. The case study in this article shows possible efficiency gains for the examined DHS at around 7%. Looking at fuel use, there is a large reduction for oil, with 10–30% reduction depending on the case in question, while the reduction is shown to be largest for the case with the lowest return water temperature. The results also show that efficiency gains will increase electricity production by about 1–3%, and that greenhouse gas (GHG) emissions are reduced by 4–20%.

Suggested Citation

  • Tommy Rosén & Louise Ödlund, 2019. "Active Management of Heat Customers Towards Lower District Heating Return Water Temperature," Energies, MDPI, vol. 12(10), pages 1-20, May.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:10:p:1863-:d:231617
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/10/1863/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/10/1863/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Judl, Jáchym & Koskela, Sirkka & Korpela, Timo & Karvosenoja, Niko & Häyrinen, Anna & Rantsi, Jari, 2014. "Net environmental impacts of low-share wood pellet co-combustion in an existing coal-fired CHP (combined heat and power) production in Helsinki, Finland," Energy, Elsevier, vol. 77(C), pages 844-851.
    2. Tunzi, Michele & Østergaard, Dorte Skaarup & Svendsen, Svend & Boukhanouf, Rabah & Cooper, Edward, 2016. "Method to investigate and plan the application of low temperature district heating to existing hydraulic radiator systems in existing buildings," Energy, Elsevier, vol. 113(C), pages 413-421.
    3. Gebremedhin, Alemayehu, 2012. "Introducing District Heating in a Norwegian town – Potential for reduced Local and Global Emissions," Applied Energy, Elsevier, vol. 95(C), pages 300-304.
    4. Zhang, Lipeng & Gudmundsson, Oddgeir & Thorsen, Jan Eric & Li, Hongwei & Li, Xiaopeng & Svendsen, Svend, 2016. "Method for reducing excess heat supply experienced in typical Chinese district heating systems by achieving hydraulic balance and improving indoor air temperature control at the building level," Energy, Elsevier, vol. 107(C), pages 431-442.
    5. de Castro, Carlos & Mediavilla, Margarita & Miguel, Luis Javier & Frechoso, Fernando, 2013. "Global solar electric potential: A review of their technical and sustainable limits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 824-835.
    6. Olsson, Alexander & Grönkvist, Stefan & Lind, Mårten & Yan, Jinyue, 2016. "The elephant in the room – A comparative study of uncertainties in carbon offsets," Environmental Science & Policy, Elsevier, vol. 56(C), pages 32-38.
    7. Yang, Xiaochen & Li, Hongwei & Svendsen, Svend, 2016. "Decentralized substations for low-temperature district heating with no Legionella risk, and low return temperatures," Energy, Elsevier, vol. 110(C), pages 65-74.
    8. Lund, Henrik & Werner, Sven & Wiltshire, Robin & Svendsen, Svend & Thorsen, Jan Eric & Hvelplund, Frede & Mathiesen, Brian Vad, 2014. "4th Generation District Heating (4GDH)," Energy, Elsevier, vol. 68(C), pages 1-11.
    9. Kensby, Johan & Trüschel, Anders & Dalenbäck, Jan-Olof, 2015. "Potential of residential buildings as thermal energy storage in district heating systems – Results from a pilot test," Applied Energy, Elsevier, vol. 137(C), pages 773-781.
    10. Lundström, Lukas & Wallin, Fredrik, 2016. "Heat demand profiles of energy conservation measures in buildings and their impact on a district heating system," Applied Energy, Elsevier, vol. 161(C), pages 290-299.
    11. Lidberg, T. & Olofsson, T. & Trygg, L., 2016. "System impact of energy efficient building refurbishment within a district heated region," Energy, Elsevier, vol. 106(C), pages 45-53.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tina Lidberg & Thomas Olofsson & Louise Ödlund, 2019. "Impact of Domestic Hot Water Systems on District Heating Temperatures," Energies, MDPI, vol. 12(24), pages 1-14, December.
    2. Gao, Datong & Zhao, Bin & Kwan, Trevor Hocksun & Hao, Yong & Pei, Gang, 2022. "The spatial and temporal mismatch phenomenon in solar space heating applications: status and solutions," Applied Energy, Elsevier, vol. 321(C).
    3. Danica Djurić Ilić, 2020. "Classification of Measures for Dealing with District Heating Load Variations—A Systematic Review," Energies, MDPI, vol. 14(1), pages 1-27, December.
    4. Marco Pellegrini & Augusto Bianchini, 2018. "The Innovative Concept of Cold District Heating Networks: A Literature Review," Energies, MDPI, vol. 11(1), pages 1-16, January.
    5. Gustafsson, Marcus & Gustafsson, Moa Swing & Myhren, Jonn Are & Bales, Chris & Holmberg, Sture, 2016. "Techno-economic analysis of energy renovation measures for a district heated multi-family house," Applied Energy, Elsevier, vol. 177(C), pages 108-116.
    6. Gerald Schweiger & Fabian Kuttin & Alfred Posch, 2019. "District Heating Systems: An Analysis of Strengths, Weaknesses, Opportunities, and Threats of the 4GDH," Energies, MDPI, vol. 12(24), pages 1-15, December.
    7. Lund, Henrik & Østergaard, Poul Alberg & Chang, Miguel & Werner, Sven & Svendsen, Svend & Sorknæs, Peter & Thorsen, Jan Eric & Hvelplund, Frede & Mortensen, Bent Ole Gram & Mathiesen, Brian Vad & Boje, 2018. "The status of 4th generation district heating: Research and results," Energy, Elsevier, vol. 164(C), pages 147-159.
    8. Ashfaq, Asad & Ianakiev, Anton, 2018. "Investigation of hydraulic imbalance for converting existing boiler based buildings to low temperature district heating," Energy, Elsevier, vol. 160(C), pages 200-212.
    9. Liu, Guoqiang & Zhou, Xuan & Yan, Junwei & Yan, Gang, 2021. "A temperature and time-sharing dynamic control approach for space heating of buildings in district heating system," Energy, Elsevier, vol. 221(C).
    10. Averfalk, Helge & Werner, Sven, 2018. "Novel low temperature heat distribution technology," Energy, Elsevier, vol. 145(C), pages 526-539.
    11. Persson, Urban & Wiechers, Eva & Möller, Bernd & Werner, Sven, 2019. "Heat Roadmap Europe: Heat distribution costs," Energy, Elsevier, vol. 176(C), pages 604-622.
    12. Guo, Yurun & Wang, Shugang & Wang, Jihong & Zhang, Tengfei & Ma, Zhenjun & Jiang, Shuang, 2024. "Key district heating technologies for building energy flexibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    13. Østergaard, Dorte Skaarup & Svendsen, Svend, 2018. "Experience from a practical test of low-temperature district heating for space heating in five Danish single-family houses from the 1930s," Energy, Elsevier, vol. 159(C), pages 569-578.
    14. Michael-Allan Millar & Bruce Elrick & Greg Jones & Zhibin Yu & Neil M. Burnside, 2020. "Roadblocks to Low Temperature District Heating," Energies, MDPI, vol. 13(22), pages 1-21, November.
    15. Vandermeulen, Annelies & Van Oevelen, Tijs & van der Heijde, Bram & Helsen, Lieve, 2020. "A simulation-based evaluation of substation models for network flexibility characterisation in district heating networks," Energy, Elsevier, vol. 201(C).
    16. Østergaard, Dorte Skaarup & Tunzi, Michele & Svendsen, Svend, 2021. "What does a well-functioning heating system look like? Investigation of ten Danish buildings that utilize district heating efficiently," Energy, Elsevier, vol. 227(C).
    17. Delmastro, C. & Martinsson, F. & Dulac, J. & Corgnati, S.P., 2017. "Sustainable urban heat strategies: Perspectives from integrated district energy choices and energy conservation in buildings. Case studies in Torino and Stockholm," Energy, Elsevier, vol. 138(C), pages 1209-1220.
    18. Lidberg, T. & Gustafsson, M. & Myhren, J.A. & Olofsson, T. & Ödlund (former Trygg), L., 2018. "Environmental impact of energy refurbishment of buildings within different district heating systems," Applied Energy, Elsevier, vol. 227(C), pages 231-238.
    19. Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    20. Theofanis Benakopoulos & Robbe Salenbien & Dirk Vanhoudt & Svend Svendsen, 2019. "Improved Control of Radiator Heating Systems with Thermostatic Radiator Valves without Pre-Setting Function," Energies, MDPI, vol. 12(17), pages 1-24, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:10:p:1863-:d:231617. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.