IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v7y2014i8p5273-5290d39219.html
   My bibliography  Save this article

Comparison and Impact of Waste Heat Recovery Technologies on Passenger Car Fuel Consumption in a Normalized Driving Cycle

Author

Listed:
  • Arnaud Legros

    (PSA Peugeot Citroën, 18 rue des Fauvelles, 92256 La Garenne-Colombes Cedex, France
    Energy Systems, University of Liège, 7, chemins des chevreuils, Bât. B49 (P33), 4000 Liège, Belgium
    Institut Pprime, University of Poitiers, boulevard Marie et Pierre Curie, Téléport 2, BP 30179, 86962 Futuroscope Chasseneuil Cedex, France)

  • Ludovic Guillaume

    (Energy Systems, University of Liège, 7, chemins des chevreuils, Bât. B49 (P33), 4000 Liège, Belgium)

  • Mouad Diny

    (PSA Peugeot Citroën, 18 rue des Fauvelles, 92256 La Garenne-Colombes Cedex, France)

  • Hamid Zaïdi

    (Institut Pprime, University of Poitiers, boulevard Marie et Pierre Curie, Téléport 2, BP 30179, 86962 Futuroscope Chasseneuil Cedex, France)

  • Vincent Lemort

    (Energy Systems, University of Liège, 7, chemins des chevreuils, Bât. B49 (P33), 4000 Liège, Belgium)

Abstract

The purpose of this article was to compare different waste heat recovery system technologies designed for automotive applications. A complete literature review is done and results in two comparative graphs. In the second part, simulation models are built and calibrated in order to assess the fuel consumption reduction that can be achieved on a real driving cycle. The strength of this article is that the models are calibrated using actual data. Finally, those simulations results are analyzed and the Rankine cycle and turbocompound are the two most profitable solutions. However the simulations of the turbocompound shows its limitations because the impact on the exhaust pressure drop is not taken into account in the assessment of the car fuel consumption. Fuel reduction of up to 6% could be achieved, depending on the driving cycle and the waste heat recovery technology.

Suggested Citation

  • Arnaud Legros & Ludovic Guillaume & Mouad Diny & Hamid Zaïdi & Vincent Lemort, 2014. "Comparison and Impact of Waste Heat Recovery Technologies on Passenger Car Fuel Consumption in a Normalized Driving Cycle," Energies, MDPI, vol. 7(8), pages 1-18, August.
  • Handle: RePEc:gam:jeners:v:7:y:2014:i:8:p:5273-5290:d:39219
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/7/8/5273/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/7/8/5273/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Conklin, James C. & Szybist, James P., 2010. "A highly efficient six-stroke internal combustion engine cycle with water injection for in-cylinder exhaust heat recovery," Energy, Elsevier, vol. 35(4), pages 1658-1664.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Patil, Dipak S. & Arakerimath, Rachayya R. & Walke, Pramod V., 2018. "Thermoelectric materials and heat exchangers for power generation – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 1-22.
    2. Fuhaid Alshammari & Apostolos Karvountzis-Kontakiotis & Apostolos Pesyridis & Muhammad Usman, 2018. "Expander Technologies for Automotive Engine Organic Rankine Cycle Applications," Energies, MDPI, vol. 11(7), pages 1-36, July.
    3. Desideri, Adriano & Hernandez, Andres & Gusev, Sergei & van den Broek, Martijn & Lemort, Vincent & Quoilin, Sylvain, 2016. "Steady-state and dynamic validation of a small-scale waste heat recovery system using the ThermoCycle Modelica library," Energy, Elsevier, vol. 115(P1), pages 684-696.
    4. Mamdouh Alshammari & Fuhaid Alshammari & Apostolos Pesyridis, 2019. "Electric Boosting and Energy Recovery Systems for Engine Downsizing," Energies, MDPI, vol. 12(24), pages 1-33, December.
    5. Koppauer, H. & Kemmetmüller, W. & Kugi, A., 2017. "Modeling and optimal steady-state operating points of an ORC waste heat recovery system for diesel engines," Applied Energy, Elsevier, vol. 206(C), pages 329-345.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Zhimin & Zhang, Yanchao & Dong, Qingchun & Lin, Jian & Lin, Guoxing & Chen, Jincan, 2018. "Maximum power output and parametric choice criteria of a thermophotovoltaic cell driven by automobile exhaust," Renewable Energy, Elsevier, vol. 121(C), pages 28-35.
    2. Rahman, Ataur & Razzak, Fadhilah & Afroz, Rafia & AKM, Mohiuddin & Hawlader, MNA, 2015. "Power generation from waste of IC engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 382-395.
    3. Wasbari, F. & Bakar, R.A. & Gan, L.M. & Tahir, M.M. & Yusof, A.A., 2017. "A review of compressed-air hybrid technology in vehicle system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 935-953.
    4. Fu, Jianqin & Liu, Jingping & Ren, Chengqin & Wang, Linjun & Deng, Banglin & Xu, Zhengxin, 2012. "An open steam power cycle used for IC engine exhaust gas energy recovery," Energy, Elsevier, vol. 44(1), pages 544-554.
    5. Aghaali, Habib & Ångström, Hans-Erik, 2015. "A review of turbocompounding as a waste heat recovery system for internal combustion engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 813-824.
    6. Wu, Zhi-Jun & Yu, Xiao & Fu, Le-Zhong & Deng, Jun & Hu, Zong-Jie & Li, Li-Guang, 2014. "A high efficiency oxyfuel internal combustion engine cycle with water direct injection for waste heat recovery," Energy, Elsevier, vol. 70(C), pages 110-120.
    7. Fu, Jianqin & Liu, Jingping & Xu, Zhengxin & Ren, Chengqin & Deng, Banglin, 2013. "A combined thermodynamic cycle based on methanol dissociation for IC (internal combustion) engine exhaust heat recovery," Energy, Elsevier, vol. 55(C), pages 778-786.
    8. Zhou, Yuekuan & Cao, Sunliang & Hensen, Jan L.M. & Lund, Peter D., 2019. "Energy integration and interaction between buildings and vehicles: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    9. Saidur, R. & Rezaei, M. & Muzammil, W.K. & Hassan, M.H. & Paria, S. & Hasanuzzaman, M., 2012. "Technologies to recover exhaust heat from internal combustion engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5649-5659.
    10. Fu, Jianqin & Liu, Jingping & Feng, Renhua & Yang, Yanping & Wang, Linjun & Wang, Yong, 2013. "Energy and exergy analysis on gasoline engine based on mapping characteristics experiment," Applied Energy, Elsevier, vol. 102(C), pages 622-630.
    11. Zhu, Sipeng & Liu, Sheng & Qu, Shuan & Deng, Kangyao, 2017. "Thermodynamic and experimental researches on matching strategies of the pre-turbine steam injection and the Miller cycle applied on a turbocharged diesel engine," Energy, Elsevier, vol. 140(P1), pages 488-505.
    12. Zhao, Rongchao & Li, Weihua & Zhuge, Weilin & Zhang, Yangjun & Yin, Yong, 2017. "Numerical study on steam injection in a turbocompound diesel engine for waste heat recovery," Applied Energy, Elsevier, vol. 185(P1), pages 506-518.
    13. Zhu, Sipeng & Deng, Kangyao & Qu, Shuan, 2014. "Thermodynamic analysis of an in-cylinder waste heat recovery system for internal combustion engines," Energy, Elsevier, vol. 67(C), pages 548-556.
    14. Wu, Zhijun & Fu, Lezhong & Gao, Yang & Yu, Xiao & Deng, Jun & Li, Liguang, 2016. "Thermal efficiency boundary analysis of an internal combustion Rankine cycle engine," Energy, Elsevier, vol. 94(C), pages 38-49.
    15. Mondejar, M.E. & Andreasen, J.G. & Pierobon, L. & Larsen, U. & Thern, M. & Haglind, F., 2018. "A review of the use of organic Rankine cycle power systems for maritime applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 126-151.
    16. Najjar, Yousef S.H., 2013. "Protection of the environment by using innovative greening technologies in land transport," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 480-491.
    17. Di Battista, D. & Mauriello, M. & Cipollone, R., 2015. "Waste heat recovery of an ORC-based power unit in a turbocharged diesel engine propelling a light duty vehicle," Applied Energy, Elsevier, vol. 152(C), pages 109-120.
    18. Chen, Hao & Guo, Qi & Yang, Lu & Liu, Shenghua & Xie, Xuliang & Chen, Zhaoyang & Liu, Zengqiang, 2015. "A new six stroke single cylinder diesel engine referring Rankine cycle," Energy, Elsevier, vol. 87(C), pages 336-342.
    19. Gürbüz, Habib & Akçay, Hüsameddin, 2023. "Development of an integrated waste heat recovery system consisting of a thermoelectric generator and thermal energy storage for a propane fueled SI engine," Energy, Elsevier, vol. 282(C).
    20. José Galindo & Vicente Dolz & Lucía Royo-Pascual & Regine Haller & Julien Melis, 2016. "Modeling and Experimental Validation of a Volumetric Expander Suitable for Waste Heat Recovery from an Automotive Internal Combustion Engine Using an Organic Rankine Cycle with Ethanol," Energies, MDPI, vol. 9(4), pages 1-18, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:7:y:2014:i:8:p:5273-5290:d:39219. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.