IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i22p4273-d285235.html
   My bibliography  Save this article

Wake of a Ducted Vertical Axis Tidal Turbine in Turbulent Flows, LBM Actuator-Line Approach

Author

Listed:
  • Mikaël Grondeau

    (Normandie Univ, UNICAEN LUSAC, EA 4253, 60 rue Max-Pol Fouchet, CS 20082 Cherbourg, France)

  • Sylvain Guillou

    (Normandie Univ, UNICAEN LUSAC, EA 4253, 60 rue Max-Pol Fouchet, CS 20082 Cherbourg, France)

  • Philippe Mercier

    (Normandie Univ, UNICAEN LUSAC, EA 4253, 60 rue Max-Pol Fouchet, CS 20082 Cherbourg, France)

  • Emmanuel Poizot

    (Conservatoire National des Arts et Métiers-INTECHMER, Bd de Collignon, 50110 Tourlaville, France)

Abstract

Vertical axis tidal turbines are devices that extract the kinetic energy from tidal currents. Tidal currents can be highly turbulent. Since ambient turbulence affects the turbine hydrodynamic, it is critical to understand its influence in order to optimize tidal farms. Actuator Line Model (ALM) combined with Large Eddy Simulation (LES) is a promising way to comprehend this phenomenon. In this article, an ALM was implemented into a Lattice Boltzmann Method (LBM) LES solver. This implementation gives good results for predicting the wake of a vertical axis tidal turbine placed into a turbulent boundary layer. The validated numerical configuration was then used to compute the wake of a real size ducted vertical axis tidal turbine. Several upstream turbulence rates were simulated. It was found that the shape of the wake is strongly influenced by the ambient turbulence. The cost-to-precision ratio of ALM-LBM-LES compared to fully resolved LBM-LES makes it a promising way of modeling tidal farms.

Suggested Citation

  • Mikaël Grondeau & Sylvain Guillou & Philippe Mercier & Emmanuel Poizot, 2019. "Wake of a Ducted Vertical Axis Tidal Turbine in Turbulent Flows, LBM Actuator-Line Approach," Energies, MDPI, vol. 12(22), pages 1-23, November.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:22:p:4273-:d:285235
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/22/4273/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/22/4273/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Thiébaut, Maxime & Sentchev, Alexei & du Bois, Pascal Bailly, 2019. "Merging velocity measurements and modeling to improve understanding of tidal stream resource in Alderney Race," Energy, Elsevier, vol. 178(C), pages 460-470.
    2. Ahmed, U. & Apsley, D.D. & Afgan, I. & Stallard, T. & Stansby, P.K., 2017. "Fluctuating loads on a tidal turbine due to velocity shear and turbulence: Comparison of CFD with field data," Renewable Energy, Elsevier, vol. 112(C), pages 235-246.
    3. Elie, B. & Oger, G. & Guillerm, P.-E. & Alessandrini, B., 2017. "Simulation of horizontal axis tidal turbine wakes using a Weakly-Compressible Cartesian Hydrodynamic solver with local mesh refinement," Renewable Energy, Elsevier, vol. 108(C), pages 336-354.
    4. Mycek, Paul & Gaurier, Benoît & Germain, Grégory & Pinon, Grégory & Rivoalen, Elie, 2014. "Experimental study of the turbulence intensity effects on marine current turbines behaviour. Part I: One single turbine," Renewable Energy, Elsevier, vol. 66(C), pages 729-746.
    5. Liu, Cheng & Hu, Changhong, 2019. "An actuator line - immersed boundary method for simulation of multiple tidal turbines," Renewable Energy, Elsevier, vol. 136(C), pages 473-490.
    6. Sina Shamsoddin & Fernando Porté-Agel, 2014. "Large Eddy Simulation of Vertical Axis Wind Turbine Wakes," Energies, MDPI, vol. 7(2), pages 1-23, February.
    7. Sina Shamsoddin & Fernando Porté-Agel, 2016. "A Large-Eddy Simulation Study of Vertical Axis Wind Turbine Wakes in the Atmospheric Boundary Layer," Energies, MDPI, vol. 9(5), pages 1-23, May.
    8. Ouro, Pablo & Runge, Stefan & Luo, Qianyu & Stoesser, Thorsten, 2019. "Three-dimensionality of the wake recovery behind a vertical axis turbine," Renewable Energy, Elsevier, vol. 133(C), pages 1066-1077.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Laurie Jégo & Sylvain S. Guillou, 2021. "Study of a Bi-Vertical Axis Turbines Farm Using the Actuator Cylinder Method," Energies, MDPI, vol. 14(16), pages 1-23, August.
    2. Moreau, Martin & Bloch, Noam & Germain, Grégory & Maurice, Guillaume, 2024. "Experimental study of the upstream bathymetry effects on a ducted twin vertical axis turbine," Renewable Energy, Elsevier, vol. 224(C).
    3. Moreau, Martin & Germain, Grégory & Maurice, Guillaume, 2023. "Experimental performance and wake study of a ducted twin vertical axis turbine in ebb and flood tide currents at a 1/20th scale," Renewable Energy, Elsevier, vol. 214(C), pages 318-333.
    4. M. Chávez-Modena & J. L. Martínez & J. A. Cabello & E. Ferrer, 2020. "Simulations of Aerodynamic Separated Flows Using the Lattice Boltzmann Solver XFlow," Energies, MDPI, vol. 13(19), pages 1-22, October.
    5. Posa, Antonio, 2022. "Wake characterization of paired cross-flow turbines," Renewable Energy, Elsevier, vol. 196(C), pages 1064-1094.
    6. Jérôme Thiébot & Nasteho Djama Dirieh & Sylvain Guillou & Nicolas Guillou, 2021. "The Efficiency of a Fence of Tidal Turbines in the Alderney Race: Comparison between Analytical and Numerical Models," Energies, MDPI, vol. 14(4), pages 1-13, February.
    7. Li, Gang & Zhu, Weidong, 2023. "Tidal current energy harvesting technologies: A review of current status and life cycle assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    8. Elie, B. & Oger, G. & Vittoz, L. & Le Touzé, D., 2022. "Simulation of two in-line wind turbines using an incompressible Finite Volume solver coupled with a Blade Element Model," Renewable Energy, Elsevier, vol. 187(C), pages 81-93.
    9. Zheng Yuan & Jin Jiang & Jun Zang & Qihu Sheng & Ke Sun & Xuewei Zhang & Renwei Ji, 2020. "A Fast Two-Dimensional Numerical Method for the Wake Simulation of a Vertical Axis Wind Turbine," Energies, MDPI, vol. 14(1), pages 1-21, December.
    10. Mickael Grondeau & Sylvain S. Guillou & Jean Charles Poirier & Philippe Mercier & Emmnuel Poizot & Yann Méar, 2022. "Studying the Wake of a Tidal Turbine with an IBM-LBM Approach Using Realistic Inflow Conditions," Energies, MDPI, vol. 15(6), pages 1-34, March.
    11. Pierre-Luc Delafin & François Deniset & Jacques André Astolfi & Frédéric Hauville, 2021. "Performance Improvement of a Darrieus Tidal Turbine with Active Variable Pitch," Energies, MDPI, vol. 14(3), pages 1-18, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mickael Grondeau & Sylvain S. Guillou & Jean Charles Poirier & Philippe Mercier & Emmnuel Poizot & Yann Méar, 2022. "Studying the Wake of a Tidal Turbine with an IBM-LBM Approach Using Realistic Inflow Conditions," Energies, MDPI, vol. 15(6), pages 1-34, March.
    2. Laurie Jégo & Sylvain S. Guillou, 2021. "Study of a Bi-Vertical Axis Turbines Farm Using the Actuator Cylinder Method," Energies, MDPI, vol. 14(16), pages 1-23, August.
    3. Myriam Slama & Camille Choma Bex & Grégory Pinon & Michael Togneri & Iestyn Evans, 2021. "Lagrangian Vortex Computations of a Four Tidal Turbine Array: An Example Based on the NEPTHYD Layout in the Alderney Race," Energies, MDPI, vol. 14(13), pages 1-23, June.
    4. Vinod, Ashwin & Han, Cong & Banerjee, Arindam, 2021. "Tidal turbine performance and near-wake characteristics in a sheared turbulent inflow," Renewable Energy, Elsevier, vol. 175(C), pages 840-852.
    5. Draycott, S. & Sellar, B. & Davey, T. & Noble, D.R. & Venugopal, V. & Ingram, D.M., 2019. "Capture and simulation of the ocean environment for offshore renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 15-29.
    6. Borg, Mitchell G. & Xiao, Qing & Allsop, Steven & Incecik, Atilla & Peyrard, Christophe, 2020. "A numerical performance analysis of a ducted, high-solidity tidal turbine," Renewable Energy, Elsevier, vol. 159(C), pages 663-682.
    7. Jiyong Lee & Mirko Musa & Chris Feist & Jinjin Gao & Lian Shen & Michele Guala, 2019. "Wake Characteristics and Power Performance of a Drag-Driven in-Bank Vertical Axis Hydrokinetic Turbine," Energies, MDPI, vol. 12(19), pages 1-20, September.
    8. Thiébaut, Maxime & Filipot, Jean-François & Maisondieu, Christophe & Damblans, Guillaume & Duarte, Rui & Droniou, Eloi & Chaplain, Nicolas & Guillou, Sylvain, 2020. "A comprehensive assessment of turbulence at a tidal-stream energy site influenced by wind-generated ocean waves," Energy, Elsevier, vol. 191(C).
    9. Modali, Pranav K. & Vinod, Ashwin & Banerjee, Arindam, 2021. "Towards a better understanding of yawed turbine wake for efficient wake steering in tidal arrays," Renewable Energy, Elsevier, vol. 177(C), pages 482-494.
    10. Villeneuve, Thierry & Boudreau, Matthieu & Dumas, Guy, 2020. "Improving the efficiency and the wake recovery rate of vertical-axis turbines using detached end-plates," Renewable Energy, Elsevier, vol. 150(C), pages 31-45.
    11. Mujahid Badshah & Saeed Badshah & James VanZwieten & Sakhi Jan & Muhammad Amir & Suheel Abdullah Malik, 2019. "Coupled Fluid-Structure Interaction Modelling of Loads Variation and Fatigue Life of a Full-Scale Tidal Turbine under the Effect of Velocity Profile," Energies, MDPI, vol. 12(11), pages 1-22, June.
    12. Faizan, Muhammad & Badshah, Saeed & Badshah, Mujahid & Haider, Basharat Ali, 2022. "Performance and wake analysis of horizontal axis tidal current turbine using Improved Delayed Detached Eddy Simulation," Renewable Energy, Elsevier, vol. 184(C), pages 740-752.
    13. Lucy Massie & Pablo Ouro & Thorsten Stoesser & Qianyu Luo, 2019. "An Actuator Surface Model to Simulate Vertical Axis Turbines," Energies, MDPI, vol. 12(24), pages 1-16, December.
    14. Mahdi Abkar, 2018. "Theoretical Modeling of Vertical-Axis Wind Turbine Wakes," Energies, MDPI, vol. 12(1), pages 1-10, December.
    15. Guerra, Maricarmen & Hay, Alex E., 2024. "Field observations of the wake from a full-scale tidal turbine array," Renewable Energy, Elsevier, vol. 226(C).
    16. Villeneuve, Thierry & Dumas, Guy, 2021. "Impact of some design considerations on the wake recovery of vertical-axis turbines," Renewable Energy, Elsevier, vol. 180(C), pages 1419-1438.
    17. Vinod, Ashwin & Banerjee, Arindam, 2019. "Performance and near-wake characterization of a tidal current turbine in elevated levels of free stream turbulence," Applied Energy, Elsevier, vol. 254(C).
    18. Santiago Laín & Manuel A. Taborda & Omar D. López, 2018. "Numerical Study of the Effect of Winglets on the Performance of a Straight Blade Darrieus Water Turbine," Energies, MDPI, vol. 11(2), pages 1-24, January.
    19. Druault, Philippe & Gaurier, Benoît & Germain, Grégory, 2022. "Spatial integration effect on velocity spectrum: Towards an interpretation of the − 11/3 power law observed in the spectra of turbine outputs," Renewable Energy, Elsevier, vol. 181(C), pages 1062-1080.
    20. Federico Attene & Francesco Balduzzi & Alessandro Bianchini & M. Sergio Campobasso, 2020. "Using Experimentally Validated Navier-Stokes CFD to Minimize Tidal Stream Turbine Power Losses Due to Wake/Turbine Interactions," Sustainability, MDPI, vol. 12(21), pages 1-26, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:22:p:4273-:d:285235. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.