IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v150y2020icp31-45.html
   My bibliography  Save this article

Improving the efficiency and the wake recovery rate of vertical-axis turbines using detached end-plates

Author

Listed:
  • Villeneuve, Thierry
  • Boudreau, Matthieu
  • Dumas, Guy

Abstract

In the present work, Delayed Detached-Eddy Simulations (DDES) are conducted to evaluate the performance of an H-Darrieus vertical-axis turbine with detached end-plates, namely stationary end-plates that are not in contact with the turbine blades. More precisely, the force and the power coefficients of the turbine are analyzed for two different geometries of detached end-plates. The turbine wake dynamics is also presented and the main mechanisms responsible for the wake recovery rate are assessed. The results show that the presence of detached end-plates significantly increases the efficiency of the vertical-axis turbine considered. In addition to this improved efficiency, a semi-annular shape of detached end-plate leads to an improved recovery of the mean streamwise velocity in the turbine wake. The important wake recovery rate in the near-wake of the turbine with semi-annular detached end-plates is mainly related to the transport of momentum by the mean spanwise velocity field, which is also known to be the dominant contribution to the wake recovery rate of a turbine without detached end-plates. The results presented in this paper confirm that detached end-plates have a great potential to improve the performance of H-Darrieus vertical-axis turbines used both individually and within turbine farms.

Suggested Citation

  • Villeneuve, Thierry & Boudreau, Matthieu & Dumas, Guy, 2020. "Improving the efficiency and the wake recovery rate of vertical-axis turbines using detached end-plates," Renewable Energy, Elsevier, vol. 150(C), pages 31-45.
  • Handle: RePEc:eee:renene:v:150:y:2020:i:c:p:31-45
    DOI: 10.1016/j.renene.2019.12.088
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119319603
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.12.088?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bontempo, R. & Manna, M., 2016. "Effects of the duct thrust on the performance of ducted wind turbines," Energy, Elsevier, vol. 99(C), pages 274-287.
    2. Ponta, F.L. & Jacovkis, P.M., 2008. "Marine-current power generation by diffuser-augmented floating hydro-turbines," Renewable Energy, Elsevier, vol. 33(4), pages 665-673.
    3. Kinsey, Thomas & Dumas, Guy, 2017. "Impact of channel blockage on the performance of axial and cross-flow hydrokinetic turbines," Renewable Energy, Elsevier, vol. 103(C), pages 239-254.
    4. Islam, M.R. & Mekhilef, S. & Saidur, R., 2013. "Progress and recent trends of wind energy technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 456-468.
    5. Khan, M.J. & Bhuyan, G. & Iqbal, M.T. & Quaicoe, J.E., 2009. "Hydrokinetic energy conversion systems and assessment of horizontal and vertical axis turbines for river and tidal applications: A technology status review," Applied Energy, Elsevier, vol. 86(10), pages 1823-1835, October.
    6. Tescione, G. & Ragni, D. & He, C. & Simão Ferreira, C.J. & van Bussel, G.J.W., 2014. "Near wake flow analysis of a vertical axis wind turbine by stereoscopic particle image velocimetry," Renewable Energy, Elsevier, vol. 70(C), pages 47-61.
    7. Sina Shamsoddin & Fernando Porté-Agel, 2014. "Large Eddy Simulation of Vertical Axis Wind Turbine Wakes," Energies, MDPI, vol. 7(2), pages 1-23, February.
    8. Ponta, Fernando & Shankar Dutt, Gautam, 2000. "An improved vertical-axis water-current turbine incorporating a channelling device," Renewable Energy, Elsevier, vol. 20(2), pages 223-241.
    9. Aslam Bhutta, Muhammad Mahmood & Hayat, Nasir & Farooq, Ahmed Uzair & Ali, Zain & Jamil, Sh. Rehan & Hussain, Zahid, 2012. "Vertical axis wind turbine – A review of various configurations and design techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 1926-1939.
    10. Li, Ye & Calisal, Sander M., 2010. "Three-dimensional effects and arm effects on modeling a vertical axis tidal current turbine," Renewable Energy, Elsevier, vol. 35(10), pages 2325-2334.
    11. Ouro, Pablo & Runge, Stefan & Luo, Qianyu & Stoesser, Thorsten, 2019. "Three-dimensionality of the wake recovery behind a vertical axis turbine," Renewable Energy, Elsevier, vol. 133(C), pages 1066-1077.
    12. Marsh, Philip & Ranmuthugala, Dev & Penesis, Irene & Thomas, Giles, 2015. "Three-dimensional numerical simulations of straight-bladed vertical axis tidal turbines investigating power output, torque ripple and mounting forces," Renewable Energy, Elsevier, vol. 83(C), pages 67-77.
    13. Peter Bachant & Martin Wosnik, 2016. "Effects of Reynolds Number on the Energy Conversion and Near-Wake Dynamics of a High Solidity Vertical-Axis Cross-Flow Turbine," Energies, MDPI, vol. 9(2), pages 1-18, January.
    14. Wong, Kok Hoe & Chong, Wen Tong & Sukiman, Nazatul Liana & Poh, Sin Chew & Shiah, Yui-Chuin & Wang, Chin-Tsan, 2017. "Performance enhancements on vertical axis wind turbines using flow augmentation systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 904-921.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Barnes, Andrew & Marshall-Cross, Daniel & Hughes, Ben Richard, 2021. "Towards a standard approach for future Vertical Axis Wind Turbine aerodynamics research and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    2. Villeneuve, Thierry & Winckelmans, Grégoire & Dumas, Guy, 2021. "Increasing the efficiency of vertical-axis turbines through improved blade support structures," Renewable Energy, Elsevier, vol. 169(C), pages 1386-1401.
    3. Wei Zhang & Sifan Yang & Cheng Chen & Lang Li, 2023. "Analysis of the Effects of Fluctuating Wind on the Aerodynamic Performance of a Vertical-Axis Wind Turbine with Variable Pitch," Energies, MDPI, vol. 16(20), pages 1-21, October.
    4. Tian, Wenlong & Ni, Xiwen & Li, Bo & Yang, Guangyong & Mao, Zhaoyong, 2023. "Improving the efficiency of Darrieus turbines through a gear-like turbine layout," Energy, Elsevier, vol. 267(C).
    5. Peng, H.Y. & Liu, H.J. & Yang, J.H., 2021. "A review on the wake aerodynamics of H-rotor vertical axis wind turbines," Energy, Elsevier, vol. 232(C).
    6. Villeneuve, Thierry & Dumas, Guy, 2021. "Impact of some design considerations on the wake recovery of vertical-axis turbines," Renewable Energy, Elsevier, vol. 180(C), pages 1419-1438.
    7. Jia Guo & Liping Lei, 2020. "Flow Characteristics of a Straight-Bladed Vertical Axis Wind Turbine with Inclined Pitch Axes," Energies, MDPI, vol. 13(23), pages 1-23, November.
    8. Villeneuve, Thierry & Boudreau, Matthieu & Dumas, Guy, 2021. "Assessing the performance and the wake recovery rate of flapping-foil turbines with end-plates and detached end-plates," Renewable Energy, Elsevier, vol. 179(C), pages 206-222.
    9. Yosry, Ahmed Gharib & Álvarez, Eduardo Álvarez & Valdés, Rodolfo Espina & Pandal, Adrián & Marigorta, Eduardo Blanco, 2023. "Experimental and multiphase modeling of small vertical-axis hydrokinetic turbine with free-surface variations," Renewable Energy, Elsevier, vol. 203(C), pages 788-801.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Villeneuve, Thierry & Winckelmans, Grégoire & Dumas, Guy, 2021. "Increasing the efficiency of vertical-axis turbines through improved blade support structures," Renewable Energy, Elsevier, vol. 169(C), pages 1386-1401.
    2. Villeneuve, Thierry & Dumas, Guy, 2021. "Impact of some design considerations on the wake recovery of vertical-axis turbines," Renewable Energy, Elsevier, vol. 180(C), pages 1419-1438.
    3. Hand, Brian & Kelly, Ger & Cashman, Andrew, 2021. "Aerodynamic design and performance parameters of a lift-type vertical axis wind turbine: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    4. Peng, H.Y. & Liu, H.J. & Yang, J.H., 2021. "A review on the wake aerodynamics of H-rotor vertical axis wind turbines," Energy, Elsevier, vol. 232(C).
    5. Kumar, Anuj & Saini, R.P., 2017. "Performance analysis of a Savonius hydrokinetic turbine having twisted blades," Renewable Energy, Elsevier, vol. 108(C), pages 502-522.
    6. Tunio, Intizar Ali & Shah, Madad Ali & Hussain, Tanweer & Harijan, Khanji & Mirjat, Nayyar Hussain & Memon, Abdul Hameed, 2020. "Investigation of duct augmented system effect on the overall performance of straight blade Darrieus hydrokinetic turbine," Renewable Energy, Elsevier, vol. 153(C), pages 143-154.
    7. Rezaeiha, Abdolrahim & Kalkman, Ivo & Blocken, Bert, 2017. "CFD simulation of a vertical axis wind turbine operating at a moderate tip speed ratio: Guidelines for minimum domain size and azimuthal increment," Renewable Energy, Elsevier, vol. 107(C), pages 373-385.
    8. Abutunis, A. & Taylor, G. & Fal, M. & Chandrashekhara, K., 2020. "Experimental evaluation of coaxial horizontal axis hydrokinetic composite turbine system," Renewable Energy, Elsevier, vol. 157(C), pages 232-245.
    9. Reddy, K. Bheemalingeswara & Bhosale, Amit C., 2024. "Effect of number of blades on performance and wake recovery for a vertical axis helical hydrokinetic turbine," Energy, Elsevier, vol. 299(C).
    10. Elbatran, A.H. & Ahmed, Yasser M. & Shehata, Ahmed S., 2017. "Performance study of ducted nozzle Savonius water turbine, comparison with conventional Savonius turbine," Energy, Elsevier, vol. 134(C), pages 566-584.
    11. Villeneuve, Thierry & Boudreau, Matthieu & Dumas, Guy, 2021. "Assessing the performance and the wake recovery rate of flapping-foil turbines with end-plates and detached end-plates," Renewable Energy, Elsevier, vol. 179(C), pages 206-222.
    12. Runqiang Zhang & Zhenwei Huang & Lei Tan & Yuchuan Wang & Erqi Wang, 2020. "Energy Performance and Radial Force of Vertical Axis Darrieus Turbine for Ocean Energy," Energies, MDPI, vol. 13(20), pages 1-15, October.
    13. Jiyong Lee & Mirko Musa & Chris Feist & Jinjin Gao & Lian Shen & Michele Guala, 2019. "Wake Characteristics and Power Performance of a Drag-Driven in-Bank Vertical Axis Hydrokinetic Turbine," Energies, MDPI, vol. 12(19), pages 1-20, September.
    14. Antar, E. & Elkhoury, M., 2019. "Parametric sizing optimization process of a casing for a Savonius Vertical Axis Wind Turbine," Renewable Energy, Elsevier, vol. 136(C), pages 127-138.
    15. Zanforlin, Stefania & Deluca, Stefano, 2018. "Effects of the Reynolds number and the tip losses on the optimal aspect ratio of straight-bladed Vertical Axis Wind Turbines," Energy, Elsevier, vol. 148(C), pages 179-195.
    16. Yosry, Ahmed Gharib & Álvarez, Eduardo Álvarez & Valdés, Rodolfo Espina & Pandal, Adrián & Marigorta, Eduardo Blanco, 2023. "Experimental and multiphase modeling of small vertical-axis hydrokinetic turbine with free-surface variations," Renewable Energy, Elsevier, vol. 203(C), pages 788-801.
    17. Kumar, Dinesh & Sarkar, Shibayan, 2016. "Numerical investigation of hydraulic load and stress induced in Savonius hydrokinetic turbine with the effects of augmentation techniques through fluid-structure interaction analysis," Energy, Elsevier, vol. 116(P1), pages 609-618.
    18. Posa, Antonio, 2022. "Wake characterization of paired cross-flow turbines," Renewable Energy, Elsevier, vol. 196(C), pages 1064-1094.
    19. Jia Guo & Liping Lei, 2020. "Flow Characteristics of a Straight-Bladed Vertical Axis Wind Turbine with Inclined Pitch Axes," Energies, MDPI, vol. 13(23), pages 1-23, November.
    20. Rezaeiha, Abdolrahim & Kalkman, Ivo & Blocken, Bert, 2017. "Effect of pitch angle on power performance and aerodynamics of a vertical axis wind turbine," Applied Energy, Elsevier, vol. 197(C), pages 132-150.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:150:y:2020:i:c:p:31-45. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.