IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v118y2018icp1-13.html
   My bibliography  Save this article

Experimental investigation of vertical-axis wind-turbine wakes in boundary layer flow

Author

Listed:
  • Rolin, Vincent F-C.
  • Porté-Agel, Fernando

Abstract

In this experiment, a small scale vertical-axis wind-turbine (VAWT) is immersed in a boundary-layer in a wind tunnel and stereo particle image velocimetry is employed to quantify the 3D characteristics of the wake. The measurements show that the wake is strongest behind the sector of the rotor which turns into the wind. Two counter-rotating vortex pairs in the wake induce crosswind motion which reintroduces streamwise momentum into the wake. Terms of the mean kinetic energy budget are computed and demonstrate that this crosswind flow has a significant influence on the redistribution of momentum in the wake. A similar analysis of the turbulence kinetic energy budget identifies shearing at the boundary of the wake as the primary contributor to the production of turbulence. An analytical model is developed in order to obtain a theoretical basis from which to understand how the aerodynamic behavior of VAWTs induces crosswind motion consistent with the production of counter-rotating vortex pairs.

Suggested Citation

  • Rolin, Vincent F-C. & Porté-Agel, Fernando, 2018. "Experimental investigation of vertical-axis wind-turbine wakes in boundary layer flow," Renewable Energy, Elsevier, vol. 118(C), pages 1-13.
  • Handle: RePEc:eee:renene:v:118:y:2018:i:c:p:1-13
    DOI: 10.1016/j.renene.2017.10.105
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117310753
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.10.105?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tescione, G. & Ragni, D. & He, C. & Simão Ferreira, C.J. & van Bussel, G.J.W., 2014. "Near wake flow analysis of a vertical axis wind turbine by stereoscopic particle image velocimetry," Renewable Energy, Elsevier, vol. 70(C), pages 47-61.
    2. Sina Shamsoddin & Fernando Porté-Agel, 2014. "Large Eddy Simulation of Vertical Axis Wind Turbine Wakes," Energies, MDPI, vol. 7(2), pages 1-23, February.
    3. Sina Shamsoddin & Fernando Porté-Agel, 2016. "A Large-Eddy Simulation Study of Vertical Axis Wind Turbine Wakes in the Atmospheric Boundary Layer," Energies, MDPI, vol. 9(5), pages 1-23, May.
    4. Peter Bachant & Martin Wosnik, 2016. "Effects of Reynolds Number on the Energy Conversion and Near-Wake Dynamics of a High Solidity Vertical-Axis Cross-Flow Turbine," Energies, MDPI, vol. 9(2), pages 1-18, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Barnes, Andrew & Marshall-Cross, Daniel & Hughes, Ben Richard, 2021. "Towards a standard approach for future Vertical Axis Wind Turbine aerodynamics research and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    2. Peng, H.Y. & Liu, H.J. & Yang, J.H., 2021. "A review on the wake aerodynamics of H-rotor vertical axis wind turbines," Energy, Elsevier, vol. 232(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jia Guo & Liping Lei, 2020. "Flow Characteristics of a Straight-Bladed Vertical Axis Wind Turbine with Inclined Pitch Axes," Energies, MDPI, vol. 13(23), pages 1-23, November.
    2. Villeneuve, Thierry & Boudreau, Matthieu & Dumas, Guy, 2020. "Improving the efficiency and the wake recovery rate of vertical-axis turbines using detached end-plates," Renewable Energy, Elsevier, vol. 150(C), pages 31-45.
    3. Villeneuve, Thierry & Dumas, Guy, 2021. "Impact of some design considerations on the wake recovery of vertical-axis turbines," Renewable Energy, Elsevier, vol. 180(C), pages 1419-1438.
    4. Barnes, Andrew & Marshall-Cross, Daniel & Hughes, Ben Richard, 2021. "Towards a standard approach for future Vertical Axis Wind Turbine aerodynamics research and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    5. Rezaeiha, Abdolrahim & Kalkman, Ivo & Blocken, Bert, 2017. "CFD simulation of a vertical axis wind turbine operating at a moderate tip speed ratio: Guidelines for minimum domain size and azimuthal increment," Renewable Energy, Elsevier, vol. 107(C), pages 373-385.
    6. Santiago Laín & Pablo Cortés & Omar Darío López, 2020. "Numerical Simulation of the Flow around a Straight Blade Darrieus Water Turbine," Energies, MDPI, vol. 13(5), pages 1-27, March.
    7. Franchina, N. & Kouaissah, O. & Persico, G. & Savini, M., 2022. "Three-dimensional modeling and investigation of the flow around a troposkein vertical axis wind turbine at different operating conditions," Renewable Energy, Elsevier, vol. 199(C), pages 368-381.
    8. Lucy Massie & Pablo Ouro & Thorsten Stoesser & Qianyu Luo, 2019. "An Actuator Surface Model to Simulate Vertical Axis Turbines," Energies, MDPI, vol. 12(24), pages 1-16, December.
    9. Mahdi Abkar, 2018. "Theoretical Modeling of Vertical-Axis Wind Turbine Wakes," Energies, MDPI, vol. 12(1), pages 1-10, December.
    10. Peng, H.Y. & Liu, H.J. & Yang, J.H., 2021. "A review on the wake aerodynamics of H-rotor vertical axis wind turbines," Energy, Elsevier, vol. 232(C).
    11. Santiago Laín & Manuel A. Taborda & Omar D. López, 2018. "Numerical Study of the Effect of Winglets on the Performance of a Straight Blade Darrieus Water Turbine," Energies, MDPI, vol. 11(2), pages 1-24, January.
    12. Posa, Antonio, 2022. "Wake characterization of paired cross-flow turbines," Renewable Energy, Elsevier, vol. 196(C), pages 1064-1094.
    13. Ouro, Pablo & Runge, Stefan & Luo, Qianyu & Stoesser, Thorsten, 2019. "Three-dimensionality of the wake recovery behind a vertical axis turbine," Renewable Energy, Elsevier, vol. 133(C), pages 1066-1077.
    14. Gauvin-Tremblay, Olivier & Dumas, Guy, 2022. "Hydrokinetic turbine array analysis and optimization integrating blockage effects and turbine-wake interactions," Renewable Energy, Elsevier, vol. 181(C), pages 851-869.
    15. Ian D. Brownstein & Nathaniel J. Wei & John O. Dabiri, 2019. "Aerodynamically Interacting Vertical-Axis Wind Turbines: Performance Enhancement and Three-Dimensional Flow," Energies, MDPI, vol. 12(14), pages 1-23, July.
    16. Dong, Zhikun & Chen, Yaoran & Zhou, Dai & Su, Jie & Han, Zhaolong & Cao, Yong & Bao, Yan & Zhao, Feng & Wang, Rui & Zhao, Yongsheng & Xu, Yuwang, 2022. "The mean wake model and its novel characteristic parameter of H-rotor VAWTs based on random forest method," Energy, Elsevier, vol. 239(PE).
    17. Battisti, L. & Persico, G. & Dossena, V. & Paradiso, B. & Raciti Castelli, M. & Brighenti, A. & Benini, E., 2018. "Experimental benchmark data for H-shaped and troposkien VAWT architectures," Renewable Energy, Elsevier, vol. 125(C), pages 425-444.
    18. Wang, Zhenyu & Zhuang, Mei, 2017. "Leading-edge serrations for performance improvement on a vertical-axis wind turbine at low tip-speed-ratios," Applied Energy, Elsevier, vol. 208(C), pages 1184-1197.
    19. Krzysztof Rogowski, 2019. "CFD Computation of the H-Darrieus Wind Turbine—The Impact of the Rotating Shaft on the Rotor Performance," Energies, MDPI, vol. 12(13), pages 1-17, June.
    20. Nguyen, Van-Dang & Jansson, Johan & Goude, Anders & Hoffman, Johan, 2019. "Direct Finite Element Simulation of the turbulent flow past a vertical axis wind turbine," Renewable Energy, Elsevier, vol. 135(C), pages 238-247.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:118:y:2018:i:c:p:1-13. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.