IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i21p8768-d432851.html
   My bibliography  Save this article

Using Experimentally Validated Navier-Stokes CFD to Minimize Tidal Stream Turbine Power Losses Due to Wake/Turbine Interactions

Author

Listed:
  • Federico Attene

    (Engineering Department, Lancaster University, Gillow Avenue, Lancaster LA1 4YR, UK)

  • Francesco Balduzzi

    (Department of Industrial Engineering, Università Degli Studi di Firenze, Via di Santa Marta 3, 50139 Firenze, Italy)

  • Alessandro Bianchini

    (Department of Industrial Engineering, Università Degli Studi di Firenze, Via di Santa Marta 3, 50139 Firenze, Italy)

  • M. Sergio Campobasso

    (Engineering Department, Lancaster University, Gillow Avenue, Lancaster LA1 4YR, UK)

Abstract

Tidal stream turbines fixed on the seabed can harness the power of tides at locations where the bathymetry and/or coastal geography result in high kinetic energy levels of the flood and/or neap currents. In large turbine arrays, however, avoiding interactions between upstream turbine wakes and downstream turbine rotors may be hard or impossible, and, therefore, tidal array layouts have to be designed to minimize the power losses caused by these interactions. For the first time, using Navier-Stokes computational fluid dynamics simulations which model the turbines with generalized actuator disks, two sets of flume tank experiments of an isolated turbine and arrays of up to four turbines are analyzed in a thorough and comprehensive fashion to investigate these interactions and the power losses they induce. Very good agreement of simulations and experiments is found in most cases. The key novel finding of this study is the evidence that the flow acceleration between the wakes of two adjacent turbines can be exploited not only to increase the kinetic energy available to a turbine working further downstream in the accelerated flow corridor, but also to reduce the power losses of said turbine due to its rotor interaction with the wake produced by a fourth turbine further upstream. By making use of periodic array simulations, it is also found that there exists an optimal lateral spacing of the two adjacent turbines, which maximizes the power of the downstream turbine with respect to when the two adjacent turbines are absent or further apart. This is accomplished by trading off the amount of flow acceleration between the wakes of the lateral turbines, and the losses due to shear and mixing of the front turbine wake and the wakes of the two lateral turbines.

Suggested Citation

  • Federico Attene & Francesco Balduzzi & Alessandro Bianchini & M. Sergio Campobasso, 2020. "Using Experimentally Validated Navier-Stokes CFD to Minimize Tidal Stream Turbine Power Losses Due to Wake/Turbine Interactions," Sustainability, MDPI, vol. 12(21), pages 1-26, October.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:21:p:8768-:d:432851
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/21/8768/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/21/8768/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bai, Guanghui & Li, Jun & Fan, Pengfei & Li, Guojun, 2013. "Numerical investigations of the effects of different arrays on power extractions of horizontal axis tidal current turbines," Renewable Energy, Elsevier, vol. 53(C), pages 180-186.
    2. Malki, Rami & Masters, Ian & Williams, Alison J. & Nick Croft, T., 2014. "Planning tidal stream turbine array layouts using a coupled blade element momentum – computational fluid dynamics model," Renewable Energy, Elsevier, vol. 63(C), pages 46-54.
    3. Gaurier, Benoît & Carlier, Clément & Germain, Grégory & Pinon, Grégory & Rivoalen, Elie, 2020. "Three tidal turbines in interaction: An experimental study of turbulence intensity effects on wakes and turbine performance," Renewable Energy, Elsevier, vol. 148(C), pages 1150-1164.
    4. Thiébot, Jérôme & Guillou, Nicolas & Guillou, Sylvain & Good, Andrew & Lewis, Michael, 2020. "Wake field study of tidal turbines under realistic flow conditions," Renewable Energy, Elsevier, vol. 151(C), pages 1196-1208.
    5. Mycek, Paul & Gaurier, Benoît & Germain, Grégory & Pinon, Grégory & Rivoalen, Elie, 2014. "Experimental study of the turbulence intensity effects on marine current turbines behaviour. Part II: Two interacting turbines," Renewable Energy, Elsevier, vol. 68(C), pages 876-892.
    6. Mycek, Paul & Gaurier, Benoît & Germain, Grégory & Pinon, Grégory & Rivoalen, Elie, 2014. "Experimental study of the turbulence intensity effects on marine current turbines behaviour. Part I: One single turbine," Renewable Energy, Elsevier, vol. 66(C), pages 729-746.
    7. Liu, Cheng & Hu, Changhong, 2019. "An actuator line - immersed boundary method for simulation of multiple tidal turbines," Renewable Energy, Elsevier, vol. 136(C), pages 473-490.
    8. Myers, L.E. & Bahaj, A.S., 2012. "An experimental investigation simulating flow effects in first generation marine current energy converter arrays," Renewable Energy, Elsevier, vol. 37(1), pages 28-36.
    9. Sufian, Sufian. F. & Li, Ming & O’Connor, Brian A., 2017. "3D modelling of impacts from waves on tidal turbine wake characteristics and energy output," Renewable Energy, Elsevier, vol. 114(PA), pages 308-322.
    10. Nuernberg, M. & Tao, L., 2018. "Experimental study of wake characteristics in tidal turbine arrays," Renewable Energy, Elsevier, vol. 127(C), pages 168-181.
    11. Vennell, Ross & Funke, Simon W. & Draper, Scott & Stevens, Craig & Divett, Tim, 2015. "Designing large arrays of tidal turbines: A synthesis and review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 454-472.
    12. Donald R. Noble & Samuel Draycott & Anup Nambiar & Brian G. Sellar & Jeffrey Steynor & Aristides Kiprakis, 2020. "Experimental Assessment of Flow, Performance, and Loads for Tidal Turbines in a Closely-Spaced Array," Energies, MDPI, vol. 13(8), pages 1-17, April.
    13. O Rourke, Fergal & Boyle, Fergal & Reynolds, Anthony, 2010. "Tidal energy update 2009," Applied Energy, Elsevier, vol. 87(2), pages 398-409, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ermando Petracca & Emilio Faraggiana & Alberto Ghigo & Massimo Sirigu & Giovanni Bracco & Giuliana Mattiazzo, 2022. "Design and Techno-Economic Analysis of a Novel Hybrid Offshore Wind and Wave Energy System," Energies, MDPI, vol. 15(8), pages 1-28, April.
    2. Soheil Radfar & Bijan Kianoush & Meysam Majidi Nezhad & Mehdi Neshat, 2022. "Developing an Extended Virtual Blade Model for Efficient Numerical Modeling of Wind and Tidal Farms," Sustainability, MDPI, vol. 14(21), pages 1-17, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Van Thinh Nguyen & Alina Santa Cruz & Sylvain S. Guillou & Mohamad N. Shiekh Elsouk & Jérôme Thiébot, 2019. "Effects of the Current Direction on the Energy Production of a Tidal Farm: The Case of Raz Blanchard (France)," Energies, MDPI, vol. 12(13), pages 1-20, June.
    2. Lo Brutto, Ottavio A. & Thiébot, Jérôme & Guillou, Sylvain S. & Gualous, Hamid, 2016. "A semi-analytic method to optimize tidal farm layouts – Application to the Alderney Race (Raz Blanchard), France," Applied Energy, Elsevier, vol. 183(C), pages 1168-1180.
    3. Sutherland, Duncan & Ordonez-Sanchez, Stephanie & Belmont, Michael R. & Moon, Ian & Steynor, Jeffrey & Davey, Thomas & Bruce, Tom, 2018. "Experimental optimisation of power for large arrays of cross-flow tidal turbines," Renewable Energy, Elsevier, vol. 116(PA), pages 685-696.
    4. Niebuhr, C.M. & Schmidt, S. & van Dijk, M. & Smith, L. & Neary, V.S., 2022. "A review of commercial numerical modelling approaches for axial hydrokinetic turbine wake analysis in channel flow," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    5. Chen, Yaling & Lin, Binliang & Liang, Dongfang, 2023. "Interactions between approaching flow and hydrokinetic turbines in a staggered layout," Renewable Energy, Elsevier, vol. 218(C).
    6. Ebdon, Tim & Allmark, Matthew J. & O’Doherty, Daphne M. & Mason-Jones, Allan & O’Doherty, Tim & Germain, Gregory & Gaurier, Benoit, 2021. "The impact of turbulence and turbine operating condition on the wakes of tidal turbines," Renewable Energy, Elsevier, vol. 165(P2), pages 96-116.
    7. Lo Brutto, Ottavio A. & Nguyen, Van Thinh & Guillou, Sylvain S. & Thiébot, Jérôme & Gualous, Hamid, 2016. "Tidal farm analysis using an analytical model for the flow velocity prediction in the wake of a tidal turbine with small diameter to depth ratio," Renewable Energy, Elsevier, vol. 99(C), pages 347-359.
    8. Riglin, Jacob & Daskiran, Cosan & Jonas, Joseph & Schleicher, W. Chris & Oztekin, Alparslan, 2016. "Hydrokinetic turbine array characteristics for river applications and spatially restricted flows," Renewable Energy, Elsevier, vol. 97(C), pages 274-283.
    9. Dominguez, Favio & Achard, Jean-Luc & Zanette, Jerônimo & Corre, Christophe, 2016. "Fast power output prediction for a single row of ducted cross-flow water turbines using a BEM-RANS approach," Renewable Energy, Elsevier, vol. 89(C), pages 658-670.
    10. Pyakurel, Parakram & VanZwieten, James H. & Sultan, Cornel & Dhanak, Manhar & Xiros, Nikolaos I., 2017. "Numerical simulation and dynamical response of a moored hydrokinetic turbine operating in the wake of an upstream turbine for control design," Renewable Energy, Elsevier, vol. 114(PB), pages 1134-1145.
    11. Chen, Yaling & Lin, Binliang & Lin, Jie & Wang, Shujie, 2017. "Experimental study of wake structure behind a horizontal axis tidal stream turbine," Applied Energy, Elsevier, vol. 196(C), pages 82-96.
    12. Edmunds, Matt & Williams, Alison J. & Masters, Ian & Banerjee, Arindam & VanZwieten, James H., 2020. "A spatially nonlinear generalised actuator disk model for the simulation of horizontal axis wind and tidal turbines," Energy, Elsevier, vol. 194(C).
    13. Cooke, S.C. & Willden, R.H.J. & Byrne, B.W., 2016. "The potential of cross-stream aligned sub-arrays to increase tidal turbine efficiency," Renewable Energy, Elsevier, vol. 97(C), pages 284-292.
    14. Donald R. Noble & Samuel Draycott & Anup Nambiar & Brian G. Sellar & Jeffrey Steynor & Aristides Kiprakis, 2020. "Experimental Assessment of Flow, Performance, and Loads for Tidal Turbines in a Closely-Spaced Array," Energies, MDPI, vol. 13(8), pages 1-17, April.
    15. Chen, Long & Yao, Yu & Wang, Zhi-liang, 2020. "Development and validation of a prediction model for the multi-wake of tidal stream turbines," Renewable Energy, Elsevier, vol. 155(C), pages 800-809.
    16. Craig Hill & Vincent S. Neary & Michele Guala & Fotis Sotiropoulos, 2020. "Performance and Wake Characterization of a Model Hydrokinetic Turbine: The Reference Model 1 (RM1) Dual Rotor Tidal Energy Converter," Energies, MDPI, vol. 13(19), pages 1-21, October.
    17. Gaurier, Benoît & Carlier, Clément & Germain, Grégory & Pinon, Grégory & Rivoalen, Elie, 2020. "Three tidal turbines in interaction: An experimental study of turbulence intensity effects on wakes and turbine performance," Renewable Energy, Elsevier, vol. 148(C), pages 1150-1164.
    18. Gao, Jinjin & Liu, Han & Lee, Jiyong & Zheng, Yuan & Guala, Michele & Shen, Lian, 2022. "Large-eddy simulation and Co-Design strategy for a drag-type vertical axis hydrokinetic turbine in open channel flows," Renewable Energy, Elsevier, vol. 181(C), pages 1305-1316.
    19. Badoe, Charles E. & Edmunds, Matt & Williams, Alison J. & Nambiar, Anup & Sellar, Brian & Kiprakis, Aristides & Masters, Ian, 2022. "Robust validation of a generalised actuator disk CFD model for tidal turbine analysis using the FloWave ocean energy research facility," Renewable Energy, Elsevier, vol. 190(C), pages 232-250.
    20. Lin, Jie & Lin, Binliang & Sun, Jian & Chen, Yaling, 2021. "Wake structure and mechanical energy transformation induced by a horizontal axis tidal stream turbine," Renewable Energy, Elsevier, vol. 171(C), pages 1344-1356.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:21:p:8768-:d:432851. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.