IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v133y2019icp1066-1077.html
   My bibliography  Save this article

Three-dimensionality of the wake recovery behind a vertical axis turbine

Author

Listed:
  • Ouro, Pablo
  • Runge, Stefan
  • Luo, Qianyu
  • Stoesser, Thorsten

Abstract

The wake recovery downstream of a vertical axis turbine operating in a turbulent channel flow is investigated via detailed velocity measurements using an Acoustic Doppler Velocimeter. Three distinct wake regions are identified: (i) a near-wake region which extends until two rotor diameters (2D) downstream and characterised by a low-momentum area isolated from the ambient flow and the presence of energetic dynamic stall vortices; (ii) a transition region (2D-5D), characterised by a fast momentum recovery, high levels of turbulence and vertical expansion of the wake; and (iii) a far-wake region beyond 5D where the velocity recovers to approximately 95% of the free-stream velocity. Albeit the wake deficit recovery is mostly accomplished at 5D behind the turbine, rotor-induced effects are still present beyond 10D as indicated by high-order flow statistics, such as high velocity fluctuations and flow skewness. The analysis of the streamwise momentum budget reveals that advection is the main mechanism for momentum replenishment through most of the wake and turbulent transport terms play only a minor role. This study evidences the anisotropic nature of the turbulence and asymmetry of the flow in horizontal, vertical and cross-sectional planes downstream of the vertical axis turbine.

Suggested Citation

  • Ouro, Pablo & Runge, Stefan & Luo, Qianyu & Stoesser, Thorsten, 2019. "Three-dimensionality of the wake recovery behind a vertical axis turbine," Renewable Energy, Elsevier, vol. 133(C), pages 1066-1077.
  • Handle: RePEc:eee:renene:v:133:y:2019:i:c:p:1066-1077
    DOI: 10.1016/j.renene.2018.10.111
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014811831317X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.10.111?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bachant, Peter & Wosnik, Martin, 2015. "Performance measurements of cylindrical- and spherical-helical cross-flow marine hydrokinetic turbines, with estimates of exergy efficiency," Renewable Energy, Elsevier, vol. 74(C), pages 318-325.
    2. Tescione, G. & Ragni, D. & He, C. & Simão Ferreira, C.J. & van Bussel, G.J.W., 2014. "Near wake flow analysis of a vertical axis wind turbine by stereoscopic particle image velocimetry," Renewable Energy, Elsevier, vol. 70(C), pages 47-61.
    3. Peter Bachant & Martin Wosnik, 2016. "Effects of Reynolds Number on the Energy Conversion and Near-Wake Dynamics of a High Solidity Vertical-Axis Cross-Flow Turbine," Energies, MDPI, vol. 9(2), pages 1-18, January.
    4. Esteban, Miguel & Leary, David, 2012. "Current developments and future prospects of offshore wind and ocean energy," Applied Energy, Elsevier, vol. 90(1), pages 128-136.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gao, Jinjin & Liu, Han & Lee, Jiyong & Zheng, Yuan & Guala, Michele & Shen, Lian, 2022. "Large-eddy simulation and Co-Design strategy for a drag-type vertical axis hydrokinetic turbine in open channel flows," Renewable Energy, Elsevier, vol. 181(C), pages 1305-1316.
    2. Reddy, K. Bheemalingeswara & Bhosale, Amit C., 2024. "Effect of number of blades on performance and wake recovery for a vertical axis helical hydrokinetic turbine," Energy, Elsevier, vol. 299(C).
    3. Villeneuve, Thierry & Boudreau, Matthieu & Dumas, Guy, 2021. "Assessing the performance and the wake recovery rate of flapping-foil turbines with end-plates and detached end-plates," Renewable Energy, Elsevier, vol. 179(C), pages 206-222.
    4. Reddy, K. Bheemalingeswara & Bhosale, Amit C., 2024. "Influence of aspect ratio on the performance and wake recovery of lift-type helical hydrokinetic turbine," Energy, Elsevier, vol. 289(C).
    5. Runqiang Zhang & Zhenwei Huang & Lei Tan & Yuchuan Wang & Erqi Wang, 2020. "Energy Performance and Radial Force of Vertical Axis Darrieus Turbine for Ocean Energy," Energies, MDPI, vol. 13(20), pages 1-15, October.
    6. Lucy Massie & Pablo Ouro & Thorsten Stoesser & Qianyu Luo, 2019. "An Actuator Surface Model to Simulate Vertical Axis Turbines," Energies, MDPI, vol. 12(24), pages 1-16, December.
    7. Jiyong Lee & Mirko Musa & Chris Feist & Jinjin Gao & Lian Shen & Michele Guala, 2019. "Wake Characteristics and Power Performance of a Drag-Driven in-Bank Vertical Axis Hydrokinetic Turbine," Energies, MDPI, vol. 12(19), pages 1-20, September.
    8. Lilian Lieber & Shaun Fraser & Daniel Coles & W. Alex M. Nimmo-Smith, 2024. "Sheared turbulent flows and wake dynamics of an idled floating tidal turbine," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    9. Villeneuve, Thierry & Winckelmans, Grégoire & Dumas, Guy, 2021. "Increasing the efficiency of vertical-axis turbines through improved blade support structures," Renewable Energy, Elsevier, vol. 169(C), pages 1386-1401.
    10. Yosry, Ahmed Gharib & Álvarez, Eduardo Álvarez & Valdés, Rodolfo Espina & Pandal, Adrián & Marigorta, Eduardo Blanco, 2023. "Experimental and multiphase modeling of small vertical-axis hydrokinetic turbine with free-surface variations," Renewable Energy, Elsevier, vol. 203(C), pages 788-801.
    11. Guerra, Maricarmen & Hay, Alex E., 2024. "Field observations of the wake from a full-scale tidal turbine array," Renewable Energy, Elsevier, vol. 226(C).
    12. Posa, Antonio, 2022. "Wake characterization of paired cross-flow turbines," Renewable Energy, Elsevier, vol. 196(C), pages 1064-1094.
    13. Honggu Yeo & Woochan Seok & Soyong Shin & Young Cheol Huh & Byung Chang Jung & Cheol-Soo Myung & Shin Hyung Rhee, 2019. "Computational Analysis of the Performance of a Vertical Axis Turbine in a Water Pipe," Energies, MDPI, vol. 12(20), pages 1-15, October.
    14. Villeneuve, Thierry & Boudreau, Matthieu & Dumas, Guy, 2020. "Improving the efficiency and the wake recovery rate of vertical-axis turbines using detached end-plates," Renewable Energy, Elsevier, vol. 150(C), pages 31-45.
    15. Villeneuve, Thierry & Dumas, Guy, 2021. "Impact of some design considerations on the wake recovery of vertical-axis turbines," Renewable Energy, Elsevier, vol. 180(C), pages 1419-1438.
    16. Manuel Viqueira-Moreira & Esteban Ferrer, 2020. "Insights into the Aeroacoustic Noise Generation for Vertical Axis Turbines in Close Proximity," Energies, MDPI, vol. 13(16), pages 1-18, August.
    17. Mikaël Grondeau & Sylvain Guillou & Philippe Mercier & Emmanuel Poizot, 2019. "Wake of a Ducted Vertical Axis Tidal Turbine in Turbulent Flows, LBM Actuator-Line Approach," Energies, MDPI, vol. 12(22), pages 1-23, November.
    18. Zheng Yuan & Jin Jiang & Jun Zang & Qihu Sheng & Ke Sun & Xuewei Zhang & Renwei Ji, 2020. "A Fast Two-Dimensional Numerical Method for the Wake Simulation of a Vertical Axis Wind Turbine," Energies, MDPI, vol. 14(1), pages 1-21, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Villeneuve, Thierry & Boudreau, Matthieu & Dumas, Guy, 2020. "Improving the efficiency and the wake recovery rate of vertical-axis turbines using detached end-plates," Renewable Energy, Elsevier, vol. 150(C), pages 31-45.
    2. Wang, Zhenyu & Zhuang, Mei, 2017. "Leading-edge serrations for performance improvement on a vertical-axis wind turbine at low tip-speed-ratios," Applied Energy, Elsevier, vol. 208(C), pages 1184-1197.
    3. Jia Guo & Liping Lei, 2020. "Flow Characteristics of a Straight-Bladed Vertical Axis Wind Turbine with Inclined Pitch Axes," Energies, MDPI, vol. 13(23), pages 1-23, November.
    4. Rolin, Vincent F-C. & Porté-Agel, Fernando, 2018. "Experimental investigation of vertical-axis wind-turbine wakes in boundary layer flow," Renewable Energy, Elsevier, vol. 118(C), pages 1-13.
    5. Barnes, Andrew & Marshall-Cross, Daniel & Hughes, Ben Richard, 2021. "Towards a standard approach for future Vertical Axis Wind Turbine aerodynamics research and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    6. Rezaeiha, Abdolrahim & Kalkman, Ivo & Blocken, Bert, 2017. "CFD simulation of a vertical axis wind turbine operating at a moderate tip speed ratio: Guidelines for minimum domain size and azimuthal increment," Renewable Energy, Elsevier, vol. 107(C), pages 373-385.
    7. Rezaeiha, Abdolrahim & Montazeri, Hamid & Blocken, Bert, 2018. "Towards optimal aerodynamic design of vertical axis wind turbines: Impact of solidity and number of blades," Energy, Elsevier, vol. 165(PB), pages 1129-1148.
    8. Jiyong Lee & Mirko Musa & Chris Feist & Jinjin Gao & Lian Shen & Michele Guala, 2019. "Wake Characteristics and Power Performance of a Drag-Driven in-Bank Vertical Axis Hydrokinetic Turbine," Energies, MDPI, vol. 12(19), pages 1-20, September.
    9. Lucy Massie & Pablo Ouro & Thorsten Stoesser & Qianyu Luo, 2019. "An Actuator Surface Model to Simulate Vertical Axis Turbines," Energies, MDPI, vol. 12(24), pages 1-16, December.
    10. Villeneuve, Thierry & Dumas, Guy, 2021. "Impact of some design considerations on the wake recovery of vertical-axis turbines," Renewable Energy, Elsevier, vol. 180(C), pages 1419-1438.
    11. Posa, Antonio, 2022. "Wake characterization of paired cross-flow turbines," Renewable Energy, Elsevier, vol. 196(C), pages 1064-1094.
    12. Gauvin-Tremblay, Olivier & Dumas, Guy, 2022. "Hydrokinetic turbine array analysis and optimization integrating blockage effects and turbine-wake interactions," Renewable Energy, Elsevier, vol. 181(C), pages 851-869.
    13. Villeneuve, Thierry & Winckelmans, Grégoire & Dumas, Guy, 2021. "Increasing the efficiency of vertical-axis turbines through improved blade support structures," Renewable Energy, Elsevier, vol. 169(C), pages 1386-1401.
    14. Rezaeiha, Abdolrahim & Montazeri, Hamid & Blocken, Bert, 2019. "On the accuracy of turbulence models for CFD simulations of vertical axis wind turbines," Energy, Elsevier, vol. 180(C), pages 838-857.
    15. Musa, Mirko & Hill, Craig & Guala, Michele, 2019. "Interaction between hydrokinetic turbine wakes and sediment dynamics: array performance and geomorphic effects under different siting strategies and sediment transport conditions," Renewable Energy, Elsevier, vol. 138(C), pages 738-753.
    16. Ross, Hannah & Polagye, Brian, 2020. "An experimental assessment of analytical blockage corrections for turbines," Renewable Energy, Elsevier, vol. 152(C), pages 1328-1341.
    17. Kun Wang & Li Zou & Aimin Wang & Peidong Zhao & Yichen Jiang, 2020. "Wind Tunnel Study on Wake Instability of Twin H-Rotor Vertical-Axis Turbines," Energies, MDPI, vol. 13(17), pages 1-18, August.
    18. Li, Hui & Wang, LiGuo, 2023. "Numerical study on self-power supply of large marine monitoring buoys: Wave-excited vibration energy harvesting and harvester optimization," Energy, Elsevier, vol. 285(C).
    19. Reddy, K. Bheemalingeswara & Bhosale, Amit C., 2024. "Effect of number of blades on performance and wake recovery for a vertical axis helical hydrokinetic turbine," Energy, Elsevier, vol. 299(C).
    20. Hammar, Linus & Ehnberg, Jimmy & Mavume, Alberto & Cuamba, Boaventura C. & Molander, Sverker, 2012. "Renewable ocean energy in the Western Indian Ocean," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4938-4950.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:133:y:2019:i:c:p:1066-1077. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.