IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i21p4131-d281568.html
   My bibliography  Save this article

A Fast CFD-Based Methodology for Determining the Cyclic Variability and Its Effects on Performance and Emissions of Spark-Ignition Engines

Author

Listed:
  • George M. Kosmadakis

    (Internal Combustion Engines Laboratory, Thermal Engineering Department, School of Mechanical Engineering, National Technical University of Athens, 9 Heroon Polytechniou St., Zografou Campus, 15780 Athens, Greece)

  • Constantine D. Rakopoulos

    (Internal Combustion Engines Laboratory, Thermal Engineering Department, School of Mechanical Engineering, National Technical University of Athens, 9 Heroon Polytechniou St., Zografou Campus, 15780 Athens, Greece)

Abstract

A methodology for determining the cyclic variability in spark-ignition (SI) engines has been developed recently, with the use of an in-house computational fluid dynamics (CFD) code. The simulation of a large number of engine cycles is required for the coefficient of variation (COV) of the indicated mean effective pressure (IMEP) to converge, usually more than 50 cycles. This is valid for any CFD methodology applied for this kind of simulation activity. In order to reduce the total computational time, but without reducing the accuracy of the calculations, the methodology is expanded here by simulating just five representative cycles and calculating their main parameters of concern, such as the IMEP, peak pressure, and NO and CO emissions. A regression analysis then follows for producing fitted correlations for each parameter as a function of the key variable that affects cyclic variability as has been identified by the authors so far, namely, the relative location of the local turbulent eddy with the spark plug. The application of these fitted correlations for a large number of engine cycles then leads to a fast estimation of the key parameters. This methodology is applied here for a methane-fueled SI engine, while future activities will examine cyclic variations in SI engines when fueled with different fuels and their mixtures, such as methane/hydrogen blends, and their associated pollutant emissions.

Suggested Citation

  • George M. Kosmadakis & Constantine D. Rakopoulos, 2019. "A Fast CFD-Based Methodology for Determining the Cyclic Variability and Its Effects on Performance and Emissions of Spark-Ignition Engines," Energies, MDPI, vol. 12(21), pages 1-15, October.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:21:p:4131-:d:281568
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/21/4131/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/21/4131/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rakopoulos, Dimitrios C. & Rakopoulos, Constantine D. & Kyritsis, Dimitrios C., 2016. "Butanol or DEE blends with either straight vegetable oil or biodiesel excluding fossil fuel: Comparative effects on diesel engine combustion attributes, cyclic variability and regulated emissions trad," Energy, Elsevier, vol. 115(P1), pages 314-325.
    2. Rakopoulos, C.D. & Kosmadakis, G.M. & Pariotis, E.G., 2010. "Critical evaluation of current heat transfer models used in CFD in-cylinder engine simulations and establishment of a comprehensive wall-function formulation," Applied Energy, Elsevier, vol. 87(5), pages 1612-1630, May.
    3. Rakopoulos, C.D. & Kosmadakis, G.M. & Dimaratos, A.M. & Pariotis, E.G., 2011. "Investigating the effect of crevice flow on internal combustion engines using a new simple crevice model implemented in a CFD code," Applied Energy, Elsevier, vol. 88(1), pages 111-126, January.
    4. Rakopoulos, Constantine D. & Rakopoulos, Dimitrios C. & Kosmadakis, George M. & Papagiannakis, Roussos G., 2019. "Experimental comparative assessment of butanol or ethanol diesel-fuel extenders impact on combustion features, cyclic irregularity, and regulated emissions balance in heavy-duty diesel engine," Energy, Elsevier, vol. 174(C), pages 1145-1157.
    5. Fontana, G. & Galloni, E., 2010. "Experimental analysis of a spark-ignition engine using exhaust gas recycle at WOT operation," Applied Energy, Elsevier, vol. 87(7), pages 2187-2193, July.
    6. Karvountzis-Kontakiotis, A. & Dimaratos, A. & Ntziachristos, L. & Samaras, Z., 2017. "Exploring the stochastic and deterministic aspects of cyclic emission variability on a high speed spark-ignition engine," Energy, Elsevier, vol. 118(C), pages 68-76.
    7. Rakopoulos, Constantine D. & Rakopoulos, Dimitrios C. & Mavropoulos, George C. & Kosmadakis, George M., 2018. "Investigating the EGR rate and temperature impact on diesel engine combustion and emissions under various injection timings and loads by comprehensive two-zone modeling," Energy, Elsevier, vol. 157(C), pages 990-1014.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rakopoulos, Dimitrios C. & Rakopoulos, Constantine D. & Kosmadakis, George M. & Mavropoulos, George C., 2024. "Assessing the cyclic variability of combustion and NO emissions in hydrogen-methane fueled HSSI engine via quasi-dimensional modeling under the influence of flame-kernel turbulence and equivalence rat," Energy, Elsevier, vol. 288(C).
    2. Stefan Posch & Clemens Gößnitzer & Andreas B. Ofner & Gerhard Pirker & Andreas Wimmer, 2022. "Modeling Cycle-to-Cycle Variations of a Spark-Ignited Gas Engine Using Artificial Flow Fields Generated by a Variational Autoencoder," Energies, MDPI, vol. 15(7), pages 1-16, March.
    3. Rakopoulos, Constantine D. & Rakopoulos, Dimitrios C. & Kosmadakis, George M. & Zannis, Theodoros C. & Kyritsis, Dimitrios C., 2023. "Studying the cyclic variability (CCV) of performance and NO and CO emissions in a methane-run high-speed SI engine via quasi-dimensional turbulent combustion modeling and two CCV influencing mechanism," Energy, Elsevier, vol. 272(C).
    4. Bin Hu & Cong Chen & Shouxi Jiang & Xiaosong Liu & Qianjin Dai, 2022. "Investigating the Optimization Design of Internal Flow Fields Using a Selective Catalytic Reduction Device and Computational Fluid Dynamics," Energies, MDPI, vol. 15(4), pages 1-17, February.
    5. Clemens Gößnitzer & Shawn Givler, 2021. "A New Method to Determine the Impact of Individual Field Quantities on Cycle-to-Cycle Variations in a Spark-Ignited Gas Engine," Energies, MDPI, vol. 14(14), pages 1-14, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Payri, F. & Olmeda, P. & Martín, J. & García, A., 2011. "A complete 0D thermodynamic predictive model for direct injection diesel engines," Applied Energy, Elsevier, vol. 88(12), pages 4632-4641.
    2. Rakopoulos, Dimitrios C. & Rakopoulos, Constantine D. & Kosmadakis, George M. & Giakoumis, Evangelos G., 2020. "Exergy assessment of combustion and EGR and load effects in DI diesel engine using comprehensive two-zone modeling," Energy, Elsevier, vol. 202(C).
    3. Irimescu, Adrian, 2012. "Performance and fuel conversion efficiency of a spark ignition engine fueled with iso-butanol," Applied Energy, Elsevier, vol. 96(C), pages 477-483.
    4. Rakopoulos, Constantine D. & Rakopoulos, Dimitrios C. & Kosmadakis, George M. & Zannis, Theodoros C. & Kyritsis, Dimitrios C., 2023. "Studying the cyclic variability (CCV) of performance and NO and CO emissions in a methane-run high-speed SI engine via quasi-dimensional turbulent combustion modeling and two CCV influencing mechanism," Energy, Elsevier, vol. 272(C).
    5. Curto-Risso, P.L. & Medina, A. & Calvo Hernández, A. & Guzmán-Vargas, L. & Angulo-Brown, F., 2011. "On cycle-to-cycle heat release variations in a simulated spark ignition heat engine," Applied Energy, Elsevier, vol. 88(5), pages 1557-1567, May.
    6. Pan, Suozhu & Cai, Kai & Cai, Min & Du, Chenbo & Li, Xin & Han, Weiqiang & Wang, Xin & Liu, Daming & Wei, Jiangjun & Fang, Jia & Bao, Xiuchao, 2021. "Experimental study on the cyclic variations of ethanol/diesel reactivity controlled compression ignition (RCCI) combustion in a heavy-duty diesel engine," Energy, Elsevier, vol. 237(C).
    7. Liu, Qi & Guo, Tao & Fu, Jianqin & Dai, Hongliang & Liu, Jingping, 2022. "Experimental study on the effects of injection parameters and exhaust gas recirculation on combustion, emission and performance of Atkinson cycle gasoline direct-injection engine," Energy, Elsevier, vol. 238(PB).
    8. Theodoros C. Zannis & John S. Katsanis & Georgios P. Christopoulos & Elias A. Yfantis & Roussos G. Papagiannakis & Efthimios G. Pariotis & Dimitrios C. Rakopoulos & Constantine D. Rakopoulos & Athanas, 2022. "Marine Exhaust Gas Treatment Systems for Compliance with the IMO 2020 Global Sulfur Cap and Tier III NO x Limits: A Review," Energies, MDPI, vol. 15(10), pages 1-49, May.
    9. Huang, Yongcheng & Li, Yaoting & Han, Xudong & Zhang, Jiating & Luo, Kun & Yang, Shangsheng & Wang, Jiyuan, 2020. "Investigation on fuel properties and engine performance of the extraction phase liquid of bio-oil/biodiesel blends," Renewable Energy, Elsevier, vol. 147(P1), pages 1990-2002.
    10. Mohamed Ismail, Harun & Ng, Hoon Kiat & Gan, Suyin, 2012. "Evaluation of non-premixed combustion and fuel spray models for in-cylinder diesel engine simulation," Applied Energy, Elsevier, vol. 90(1), pages 271-279.
    11. Puneet Verma & Svetlana Stevanovic & Ali Zare & Gaurav Dwivedi & Thuy Chu Van & Morgan Davidson & Thomas Rainey & Richard J. Brown & Zoran D. Ristovski, 2019. "An Overview of the Influence of Biodiesel, Alcohols, and Various Oxygenated Additives on the Particulate Matter Emissions from Diesel Engines," Energies, MDPI, vol. 12(10), pages 1-25, May.
    12. Rakopoulos, Dimitrios C. & Rakopoulos, Constantine D. & Kosmadakis, George M. & Mavropoulos, George C., 2024. "Assessing the cyclic variability of combustion and NO emissions in hydrogen-methane fueled HSSI engine via quasi-dimensional modeling under the influence of flame-kernel turbulence and equivalence rat," Energy, Elsevier, vol. 288(C).
    13. Rakopoulos, Constantine D. & Rakopoulos, Dimitrios C. & Kosmadakis, George M. & Papagiannakis, Roussos G., 2019. "Experimental comparative assessment of butanol or ethanol diesel-fuel extenders impact on combustion features, cyclic irregularity, and regulated emissions balance in heavy-duty diesel engine," Energy, Elsevier, vol. 174(C), pages 1145-1157.
    14. Kan, Xiang & Zhou, Dezhi & Yang, Wenming & Zhai, Xiaoqiang & Wang, Chi-Hwa, 2018. "An investigation on utilization of biogas and syngas produced from biomass waste in premixed spark ignition engine," Applied Energy, Elsevier, vol. 212(C), pages 210-222.
    15. Theodoros C. Zannis & Roussos G. Papagiannakis & Efthimios G. Pariotis & Marios I. Kourampas, 2019. "Experimental Study of DI Diesel Engine Operational and Environmental Behavior Using Blends of City Diesel with Glycol Ethers and RME," Energies, MDPI, vol. 12(8), pages 1-36, April.
    16. Thomas, Justin Jacob & Nagarajan, G. & Sabu, V.R. & Manojkumar, C.V. & Sharma, Vikas, 2022. "Performance and emissions of hexanol-biodiesel fuelled RCCI engine with double injection strategies," Energy, Elsevier, vol. 253(C).
    17. Liu, Kaimin & Li, Yangtao & Yang, Jing & Deng, Banglin & Feng, Renhua & Huang, Yanjun, 2018. "Comprehensive study of key operating parameters on combustion characteristics of butanol-gasoline blends in a high speed SI engine," Applied Energy, Elsevier, vol. 212(C), pages 13-32.
    18. Vélez Godiño, José Antonio & Torres García, Miguel & Jiménez-Espadafor Aguilar, Francisco José, 2022. "Experimental analysis of late direct injection combustion mode in a compression-ignition engine fuelled with biodiesel/diesel blends," Energy, Elsevier, vol. 239(PA).
    19. Rakopoulos, Constantine D. & Rakopoulos, Dimitrios C. & Kyritsis, Dimitrios C. & Andritsakis, Eleftherios C. & Mavropoulos, George C., 2022. "Exergy evaluation of equivalence ratio, compression ratio and residual gas effects in variable compression ratio spark-ignition engine using quasi-dimensional combustion modeling," Energy, Elsevier, vol. 244(PB).
    20. Gvidonas Labeckas & Stasys Slavinskas & Irena Kanapkienė, 2019. "Study of the Effects of Biofuel-Oxygen of Various Origins on a CRDI Diesel Engine Combustion and Emissions," Energies, MDPI, vol. 12(7), pages 1-49, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:21:p:4131-:d:281568. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.