IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i4p1451-d751017.html
   My bibliography  Save this article

Investigating the Optimization Design of Internal Flow Fields Using a Selective Catalytic Reduction Device and Computational Fluid Dynamics

Author

Listed:
  • Bin Hu

    (School of Mathematical and Physical, Xuzhou University of Technology, Xuzhou 221018, China
    These authors contributed equally to this work.)

  • Cong Chen

    (Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China
    These authors contributed equally to this work.)

  • Shouxi Jiang

    (School of Mathematical and Physical, Xuzhou University of Technology, Xuzhou 221018, China)

  • Xiaosong Liu

    (School of Mathematical and Physical, Xuzhou University of Technology, Xuzhou 221018, China)

  • Qianjin Dai

    (School of Mathematical and Physical, Xuzhou University of Technology, Xuzhou 221018, China)

Abstract

Selective catalytic reduction (SCR) and denitrification are the best technologies for nitrogen oxides (NO x ) control in coal-fired power plants, and their denitration efficiency and ammonia escape rate are closely related to their internal flow characteristics. By adding a deflector to the SCR device, the flow field in the curve can be effectively improved, and the stable and efficient operation of the SCR device can be realized. Based on the numerical simulation method, the SCR system of a coking coal-fired boiler in a steel plant was simulated using k-ε (the turbulence model), and three design schemes of deflectors were proposed and numerically simulated simultaneously. After optimization, the ammonia injection grid’s downstream velocity variance coefficient C V was 6.69, the catalyst upper cross-section velocity variance coefficient was 11.84, the cross-sectional temperature average was 499 K, the maximum temperature deviation was 9 °C, the maximum-to-minimum temperature interval span was 15 °C, the cross-sectional NH 3 /NOx molar ratio average value was 0.8122, the coefficient of variance was 4.67, and the pressure loss was 1855 Pa. The findings of this work will help improve the denitration efficiency and provide an important reference for the actual transformation design.

Suggested Citation

  • Bin Hu & Cong Chen & Shouxi Jiang & Xiaosong Liu & Qianjin Dai, 2022. "Investigating the Optimization Design of Internal Flow Fields Using a Selective Catalytic Reduction Device and Computational Fluid Dynamics," Energies, MDPI, vol. 15(4), pages 1-17, February.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:4:p:1451-:d:751017
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/4/1451/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/4/1451/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xin-gang, Zhao & Gui-wu, Jiang & Ang, Li & Yun, Li, 2016. "Technology, cost, a performance of waste-to-energy incineration industry in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 115-130.
    2. Ling Tang & Jiabao Qu & Zhifu Mi & Xin Bo & Xiangyu Chang & Laura Diaz Anadon & Shouyang Wang & Xiaoda Xue & Shibei Li & Xin Wang & Xiaohong Zhao, 2019. "Substantial emission reductions from Chinese power plants after the introduction of ultra-low emissions standards," Nature Energy, Nature, vol. 4(11), pages 929-938, November.
    3. George M. Kosmadakis & Constantine D. Rakopoulos, 2019. "A Fast CFD-Based Methodology for Determining the Cyclic Variability and Its Effects on Performance and Emissions of Spark-Ignition Engines," Energies, MDPI, vol. 12(21), pages 1-15, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhanzhou Pang & Ranjing Chen & Yue Cao, 2022. "Performance Analysis and Optimization for Static Mixer of SCR Denitration System under Different Arrangements," Energies, MDPI, vol. 15(23), pages 1-14, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Jin & Wang, Rui & Li, Haoran & Nie, Yaoyu & Song, Xinke & Li, Mingyu & Shi, Mai & Zheng, Xinzhu & Cai, Wenjia & Wang, Can, 2021. "Unit-level cost-benefit analysis for coal power plants retrofitted with biomass co-firing at a national level by combined GIS and life cycle assessment," Applied Energy, Elsevier, vol. 285(C).
    2. Jiang, Xueting, 2022. "Drivers of air pollution reduction paradox: Empirical evidence from directly measured unit-level data of Chinese power plants," Energy, Elsevier, vol. 254(PB).
    3. Clasen, Arno P. & Agostinho, Feni & Sulis, Federico & Almeida, Cecília M.V.B & Giannetti, Biagio F., 2024. "Unlocking the potential of municipal solid waste: Emergy accounting applied in a novel biorefinery," Ecological Modelling, Elsevier, vol. 492(C).
    4. Anwar, Ahsan & Sharif, Arshian & Fatima, Saba & Ahmad, Paiman & Sinha, Avik & Khan, Syed Abdul Rehman & Jermsittiparsert, Kittisak, 2021. "The asymmetric effect of public private partnership investment on transport CO2 emission in China: Evidence from quantile ARDL approach," MPRA Paper 108160, University Library of Munich, Germany, revised 2021.
    5. Xin Liu & Yiran Wei & Junping Ji, 2022. "Quantifying the “Water–Carbon–Sulfur” Nexus for Coal Power Plants in China," Sustainability, MDPI, vol. 14(6), pages 1-10, March.
    6. Sun, Hui & Wang, Enzhen & Li, Xiang & Cui, Xian & Guo, Jianbin & Dong, Renjie, 2021. "Potential biomethane production from crop residues in China: Contributions to carbon neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    7. Li, Xinzhuo & Choi, Minsung & Jung, Chanho & Park, Yeseul & Choi, Gyungmin, 2022. "Effects of the staging position and air−LPG mixing ratio on the combustion and emission characteristics of coal and gas co-firing," Energy, Elsevier, vol. 254(PB).
    8. Wang, Yihan & Wen, Zongguo & Lv, Xiaojun & Zhu, Junming, 2023. "The regional discrepancies in the contribution of China’s thermal power plants toward the carbon peaking target," Applied Energy, Elsevier, vol. 337(C).
    9. Yongrok Choi & Fan Yang & Hyoungsuk Lee, 2020. "On the Unbalanced Atmospheric Environmental Performance of Major Cities in China," Sustainability, MDPI, vol. 12(13), pages 1-14, July.
    10. Teng, Sin Yong & Máša, Vítězslav & Touš, Michal & Vondra, Marek & Lam, Hon Loong & Stehlík, Petr, 2022. "Waste-to-energy forecasting and real-time optimization: An anomaly-aware approach," Renewable Energy, Elsevier, vol. 181(C), pages 142-155.
    11. Lingyan Xu & Fenglian Huang & Jianguo Du & Dandan Wang, 2020. "Decisions in Power Supply Chain with Emission Reduction Effort of Coal-Fired Power Plant under the Power Market Reform," Sustainability, MDPI, vol. 12(16), pages 1-30, August.
    12. Jianxin Guo & Xianchun Tan & Xiaoyan Meng & Yanping Li, 2022. "Clean technology investment considering synergistic effects: a case from the steel sintering process," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(12), pages 13748-13770, December.
    13. Longwu Liang & Zhenbo Wang, 2021. "Control Models and Spatiotemporal Characteristics of Air Pollution in the Rapidly Developing Urban Agglomerations," IJERPH, MDPI, vol. 18(11), pages 1-16, June.
    14. Wang, Yuan & Geng, Shengnan & Zhao, Peng & Du, Huibin & He, Yu & Crittenden, John, 2016. "Cost–benefit analysis of GHG emission reduction in waste to energy projects of China under clean development mechanism," Resources, Conservation & Recycling, Elsevier, vol. 109(C), pages 90-95.
    15. Li, Mingquan & Shan, Rui & Virguez, Edgar & Patiño-Echeverri, Dalia & Gao, Shuo & Ma, Haichao, 2022. "Energy storage reduces costs and emissions even without large penetration of renewable energy: The case of China Southern Power Grid," Energy Policy, Elsevier, vol. 161(C).
    16. Rakopoulos, Dimitrios C. & Rakopoulos, Constantine D. & Kosmadakis, George M. & Mavropoulos, George C., 2024. "Assessing the cyclic variability of combustion and NO emissions in hydrogen-methane fueled HSSI engine via quasi-dimensional modeling under the influence of flame-kernel turbulence and equivalence rat," Energy, Elsevier, vol. 288(C).
    17. Hu, Yucai & Li, Ranran & Du, Lei & Ren, Shenggang & Chevallier, Julien, 2022. "Could SO2 and CO2 emissions trading schemes achieve co-benefits of emissions reduction?," Energy Policy, Elsevier, vol. 170(C).
    18. Di Wu & Haotian Zheng & Qing Li & Ling Jin & Rui Lyu & Xiang Ding & Yaoqiang Huo & Bin Zhao & Jingkun Jiang & Jianmin Chen & Xiangdong Li & Shuxiao Wang, 2022. "Toxic potency-adjusted control of air pollution for solid fuel combustion," Nature Energy, Nature, vol. 7(2), pages 194-202, February.
    19. Zhang Wen & Xin Ma & Wen Xu & Ruotong Si & Lei Liu & Mingrui Ma & Yuanhong Zhao & Aohan Tang & Yangyang Zhang & Kai Wang & Ying Zhang & Jianlin Shen & Lin Zhang & Yu Zhao & Fusuo Zhang & Keith Gouldin, 2024. "Combined short-term and long-term emission controls improve air quality sustainably in China," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    20. Xin-gang, Zhao & Yi-min, Xie, 2019. "The economic performance of industrial and commercial rooftop photovoltaic in China," Energy, Elsevier, vol. 187(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:4:p:1451-:d:751017. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.