Experimental analysis of late direct injection combustion mode in a compression-ignition engine fuelled with biodiesel/diesel blends
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2021.121895
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Rakopoulos, Constantine D. & Rakopoulos, Dimitrios C. & Kosmadakis, George M. & Papagiannakis, Roussos G., 2019. "Experimental comparative assessment of butanol or ethanol diesel-fuel extenders impact on combustion features, cyclic irregularity, and regulated emissions balance in heavy-duty diesel engine," Energy, Elsevier, vol. 174(C), pages 1145-1157.
- Rakopoulos, C.D. & Antonopoulos, K.A. & Rakopoulos, D.C., 2007. "Experimental heat release analysis and emissions of a HSDI diesel engine fueled with ethanol–diesel fuel blends," Energy, Elsevier, vol. 32(10), pages 1791-1808.
- Rakopoulos, Constantine D. & Rakopoulos, Dimitrios C. & Mavropoulos, George C. & Kosmadakis, George M., 2018. "Investigating the EGR rate and temperature impact on diesel engine combustion and emissions under various injection timings and loads by comprehensive two-zone modeling," Energy, Elsevier, vol. 157(C), pages 990-1014.
- Rakopoulos, Dimitrios C. & Rakopoulos, Constantine D. & Giakoumis, Evangelos G. & Dimaratos, Athanasios M., 2012. "Characteristics of performance and emissions in high-speed direct injection diesel engine fueled with diethyl ether/diesel fuel blends," Energy, Elsevier, vol. 43(1), pages 214-224.
- Liu, Jinlong & Dumitrescu, Cosmin E., 2019. "Single and double Wiebe function combustion model for a heavy-duty diesel engine retrofitted to natural-gas spark-ignition," Applied Energy, Elsevier, vol. 248(C), pages 95-103.
- Torres García, Miguel & José Jiménez-Espadafor Aguilar, Francisco & Sánchez Lencero, Tomás, 2009. "Experimental study of the performances of a modified diesel engine operating in homogeneous charge compression ignition (HCCI) combustion mode versus the original diesel combustion mode," Energy, Elsevier, vol. 34(2), pages 159-171.
- Maroteaux, Fadila & Saad, Charbel, 2013. "Diesel engine combustion modeling for hardware in the loop applications: Effects of ignition delay time model," Energy, Elsevier, vol. 57(C), pages 641-652.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Rakopoulos, Dimitrios C. & Rakopoulos, Constantine D. & Kosmadakis, George M. & Giakoumis, Evangelos G., 2020. "Exergy assessment of combustion and EGR and load effects in DI diesel engine using comprehensive two-zone modeling," Energy, Elsevier, vol. 202(C).
- Theodoros C. Zannis & John S. Katsanis & Georgios P. Christopoulos & Elias A. Yfantis & Roussos G. Papagiannakis & Efthimios G. Pariotis & Dimitrios C. Rakopoulos & Constantine D. Rakopoulos & Athanas, 2022. "Marine Exhaust Gas Treatment Systems for Compliance with the IMO 2020 Global Sulfur Cap and Tier III NO x Limits: A Review," Energies, MDPI, vol. 15(10), pages 1-49, May.
- Rakopoulos, Dimitrios C. & Rakopoulos, Constantine D. & Giakoumis, Evangelos G. & Papagiannakis, Roussos G. & Kyritsis, Dimitrios C., 2014. "Influence of properties of various common bio-fuels on the combustion and emission characteristics of high-speed DI (direct injection) diesel engine: Vegetable oil, bio-diesel, ethanol, n-butanol, die," Energy, Elsevier, vol. 73(C), pages 354-366.
- Ishida, Masahiro & Yamamoto, Shohei & Ueki, Hironobu & Sakaguchi, Daisaku, 2010. "Remarkable improvement of NOx–PM trade-off in a diesel engine by means of bioethanol and EGR," Energy, Elsevier, vol. 35(12), pages 4572-4581.
- Kasiraman, G. & Nagalingam, B. & Balakrishnan, M., 2012. "Performance, emission and combustion improvements in a direct injection diesel engine using cashew nut shell oil as fuel with camphor oil blending," Energy, Elsevier, vol. 47(1), pages 116-124.
- Rakopoulos, Dimitrios C. & Rakopoulos, Constantine D. & Kosmadakis, George M. & Mavropoulos, George C., 2024. "Assessing the cyclic variability of combustion and NO emissions in hydrogen-methane fueled HSSI engine via quasi-dimensional modeling under the influence of flame-kernel turbulence and equivalence rat," Energy, Elsevier, vol. 288(C).
- Rakopoulos, Constantine D. & Rakopoulos, Dimitrios C. & Kosmadakis, George M. & Papagiannakis, Roussos G., 2019. "Experimental comparative assessment of butanol or ethanol diesel-fuel extenders impact on combustion features, cyclic irregularity, and regulated emissions balance in heavy-duty diesel engine," Energy, Elsevier, vol. 174(C), pages 1145-1157.
- Hu, Deng & Wang, Hechun & Wang, Binbin & Shi, Mingwei & Duan, Baoyin & Wang, Yinyan & Yang, Chuanlei, 2022. "Calibration of 0-D combustion model applied to dual-fuel engine," Energy, Elsevier, vol. 261(PB).
- Rakopoulos, Constantine D. & Rakopoulos, Dimitrios C. & Kyritsis, Dimitrios C. & Andritsakis, Eleftherios C. & Mavropoulos, George C., 2022. "Exergy evaluation of equivalence ratio, compression ratio and residual gas effects in variable compression ratio spark-ignition engine using quasi-dimensional combustion modeling," Energy, Elsevier, vol. 244(PB).
- Gvidonas Labeckas & Stasys Slavinskas & Irena Kanapkienė, 2019. "Study of the Effects of Biofuel-Oxygen of Various Origins on a CRDI Diesel Engine Combustion and Emissions," Energies, MDPI, vol. 12(7), pages 1-49, April.
- Dongzhi Gao & Mubasher Ikram & Chao Geng & Yangyi Wu & Xiaodan Li & Chao Jin & Zunqing Zheng & Mengliang Li & Haifeng Liu, 2023. "Effects of Anhydrous and Hydrous Fusel Oil on Combustion and Emissions on a Heavy-Duty Compression-Ignition Engine," Energies, MDPI, vol. 16(17), pages 1-14, August.
- Pan, Suozhu & Cai, Kai & Cai, Min & Du, Chenbo & Li, Xin & Han, Weiqiang & Wang, Xin & Liu, Daming & Wei, Jiangjun & Fang, Jia & Bao, Xiuchao, 2021. "Experimental study on the cyclic variations of ethanol/diesel reactivity controlled compression ignition (RCCI) combustion in a heavy-duty diesel engine," Energy, Elsevier, vol. 237(C).
- Liu, Qi & Guo, Tao & Fu, Jianqin & Dai, Hongliang & Liu, Jingping, 2022. "Experimental study on the effects of injection parameters and exhaust gas recirculation on combustion, emission and performance of Atkinson cycle gasoline direct-injection engine," Energy, Elsevier, vol. 238(PB).
- Hagos, Ftwi Y. & Ali, Obed M. & Mamat, Rizalman & Abdullah, Abdul A., 2017. "Effect of emulsification and blending on the oxygenation and substitution of diesel fuel for compression ignition engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1281-1294.
- Giglio, Veniero & di Gaeta, Alessandro, 2020. "Novel regression models for wiebe parameters aimed at 0D combustion simulation in spark ignition engines," Energy, Elsevier, vol. 210(C).
- George M. Kosmadakis & Constantine D. Rakopoulos, 2019. "A Fast CFD-Based Methodology for Determining the Cyclic Variability and Its Effects on Performance and Emissions of Spark-Ignition Engines," Energies, MDPI, vol. 12(21), pages 1-15, October.
- Thomas, Justin Jacob & Nagarajan, G. & Sabu, V.R. & Manojkumar, C.V. & Sharma, Vikas, 2022. "Performance and emissions of hexanol-biodiesel fuelled RCCI engine with double injection strategies," Energy, Elsevier, vol. 253(C).
- Rakopoulos, Dimitrios C. & Rakopoulos, Constantine D. & Kyritsis, Dimitrios C., 2016. "Butanol or DEE blends with either straight vegetable oil or biodiesel excluding fossil fuel: Comparative effects on diesel engine combustion attributes, cyclic variability and regulated emissions trad," Energy, Elsevier, vol. 115(P1), pages 314-325.
- Rakopoulos, Constantine D. & Rakopoulos, Dimitrios C. & Kosmadakis, George M. & Zannis, Theodoros C. & Kyritsis, Dimitrios C., 2023. "Studying the cyclic variability (CCV) of performance and NO and CO emissions in a methane-run high-speed SI engine via quasi-dimensional turbulent combustion modeling and two CCV influencing mechanism," Energy, Elsevier, vol. 272(C).
- Vallinayagam, R. & Vedharaj, S. & Yang, W.M. & Lee, P.S. & Chua, K.J.E. & Chou, S.K., 2013. "Combustion performance and emission characteristics study of pine oil in a diesel engine," Energy, Elsevier, vol. 57(C), pages 344-351.
More about this item
Keywords
Compression ignition engine; Late injection; Biodiesel; Exhaust gas recirculation (EGR); Emissions; Heat release rate (HRR);All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:239:y:2022:i:pa:s0360544221021435. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.