IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i20p3900-d276668.html
   My bibliography  Save this article

A Modified Free Wake Vortex Ring Method for Horizontal-Axis Wind Turbines

Author

Listed:
  • Jing Dong

    (Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629 HS Delft, The Netherlands)

  • Axelle Viré

    (Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629 HS Delft, The Netherlands)

  • Carlos Simao Ferreira

    (Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629 HS Delft, The Netherlands)

  • Zhangrui Li

    (Wind Energy Group, Shanghai Electric Group Company Limited, Shanghai 200233, China)

  • Gerard van Bussel

    (Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629 HS Delft, The Netherlands)

Abstract

A modified free-wake vortex ring model is proposed to compute the dynamics of a floating horizontal-axis wind turbine, which is divided into two parts. The near wake model uses a blade bound vortex model and trailed vortex model, which is developed based on vortex filament method with straight lifting lines assumption. By contrast, the far wake model is based on the vortex ring method. The proposed model is a good compromise between accuracy and computational cost, for example when compared with more complex vortex methods. The present model is used to assess the influence of floating platform motions on the performance of a horizontal-axis wind turbine rotor. The results are validated on the 5 MW NREL rotor and compared with other aerodynamic models for the same rotor subjected to different platform motions. The results show that the proposed method is reliable. In addition, the proposed method is less time consuming and has similar accuracy when comparing with more advanced vortex based methods.

Suggested Citation

  • Jing Dong & Axelle Viré & Carlos Simao Ferreira & Zhangrui Li & Gerard van Bussel, 2019. "A Modified Free Wake Vortex Ring Method for Horizontal-Axis Wind Turbines," Energies, MDPI, vol. 12(20), pages 1-24, October.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:20:p:3900-:d:276668
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/20/3900/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/20/3900/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Thomas Sebastian & Matthew Lackner, 2012. "Analysis of the Induction and Wake Evolution of an Offshore Floating Wind Turbine," Energies, MDPI, vol. 5(4), pages 1-33, April.
    2. Lee, Hakjin & Lee, Duck-Joo, 2019. "Effects of platform motions on aerodynamic performance and unsteady wake evolution of a floating offshore wind turbine," Renewable Energy, Elsevier, vol. 143(C), pages 9-23.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Yirong & Zhang, Yuquan & Zhang, Zhi & Feng, Chen & Fernandez-Rodriguez, Emmanuel, 2024. "Analysis of wake and power fluctuation of a tidal current turbine under variable wave periods," Energy, Elsevier, vol. 304(C).
    2. Wei Li & Shinai Xu & Baiyun Qian & Xiaoxia Gao & Xiaoxun Zhu & Zeqi Shi & Wei Liu & Qiaoliang Hu, 2022. "Large-Scale Wind Turbine’s Load Characteristics Excited by the Wind and Grid in Complex Terrain: A Review," Sustainability, MDPI, vol. 14(24), pages 1-29, December.
    3. Wenyan Li & Yuxuan Xiong & Guoliang Su & Zuyang Ye & Guowu Wang & Zhao Chen, 2023. "The Aerodynamic Performance of Horizontal Axis Wind Turbines under Rotation Condition," Sustainability, MDPI, vol. 15(16), pages 1-15, August.
    4. Arabgolarcheh, Alireza & Rouhollahi, Amirhossein & Benini, Ernesto, 2023. "Analysis of middle-to-far wake behind floating offshore wind turbines in the presence of multiple platform motions," Renewable Energy, Elsevier, vol. 208(C), pages 546-560.
    5. van den Broek, Maarten J. & De Tavernier, Delphine & Sanderse, Benjamin & van Wingerden, Jan-Willem, 2022. "Adjoint optimisation for wind farm flow control with a free-vortex wake model," Renewable Energy, Elsevier, vol. 201(P1), pages 752-765.
    6. Dong, Jing & Viré, Axelle, 2021. "Comparative analysis of different criteria for the prediction of vortex ring state of floating offshore wind turbines," Renewable Energy, Elsevier, vol. 163(C), pages 882-909.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Xinbao & Cai, Chang & Cai, Shang-Gui & Wang, Tengyuan & Wang, Zekun & Song, Juanjuan & Rong, Xiaomin & Li, Qing'an, 2023. "A review of aerodynamic and wake characteristics of floating offshore wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    2. Rezaeiha, Abdolrahim & Micallef, Daniel, 2021. "Wake interactions of two tandem floating offshore wind turbines: CFD analysis using actuator disc model," Renewable Energy, Elsevier, vol. 179(C), pages 859-876.
    3. Arabgolarcheh, Alireza & Rouhollahi, Amirhossein & Benini, Ernesto, 2023. "Analysis of middle-to-far wake behind floating offshore wind turbines in the presence of multiple platform motions," Renewable Energy, Elsevier, vol. 208(C), pages 546-560.
    4. Yang, Lin & Liao, Kangping & Ma, Qingwei & Ma, Gang & Sun, Hanbing, 2023. "Investigation of wake characteristics of floating offshore wind turbine with control strategy using actuator curve embedding method," Renewable Energy, Elsevier, vol. 218(C).
    5. Zhang, Buen & Jin, Yaqing & Cheng, Shyuan & Zheng, Yuan & Chamorro, Leonardo P., 2022. "On the dynamics of a model wind turbine under passive tower oscillations," Applied Energy, Elsevier, vol. 311(C).
    6. Dong, Jing & Viré, Axelle & Li, Zhangrui, 2022. "Analysis the vortex ring state and propeller state of floating offshore wind turbines and verification of their prediction criteria by comparing with a CFD model," Renewable Energy, Elsevier, vol. 184(C), pages 15-25.
    7. Duan, Lei & Sun, Qinghong & He, Zanyang & Li, Gen, 2022. "Wake topology and energy recovery in floating horizontal-axis wind turbines with harmonic surge motion," Energy, Elsevier, vol. 260(C).
    8. Arabgolarcheh, Alireza & Micallef, Daniel & Benini, Ernesto, 2023. "The impact of platform motion phase differences on the power and load performance of tandem floating offshore wind turbines," Energy, Elsevier, vol. 284(C).
    9. Dong, Jing & Viré, Axelle, 2022. "The aerodynamics of floating offshore wind turbines in different working states during surge motion," Renewable Energy, Elsevier, vol. 195(C), pages 1125-1136.
    10. Micallef, Daniel & Rezaeiha, Abdolrahim, 2021. "Floating offshore wind turbine aerodynamics: Trends and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    11. Guo, Yize & Wang, Xiaodong & Mei, Yuanhang & Ye, Zhaoliang & Guo, Xiaojiang, 2022. "Effect of coupled platform pitch-surge motions on the aerodynamic characters of a horizontal floating offshore wind turbine," Renewable Energy, Elsevier, vol. 196(C), pages 278-297.
    12. Zhang, Lijun & Li, Ye & Xu, Wenhao & Gao, Zhiteng & Fang, Long & Li, Rongfu & Ding, Boyin & Zhao, Bin & Leng, Jun & He, Fenglan, 2022. "Systematic analysis of performance and cost of two floating offshore wind turbines with significant interactions," Applied Energy, Elsevier, vol. 321(C).
    13. Farrugia, R. & Sant, T. & Micallef, D., 2016. "A study on the aerodynamics of a floating wind turbine rotor," Renewable Energy, Elsevier, vol. 86(C), pages 770-784.
    14. Ke Song & Huiting Huan & Yuchi Kang, 2022. "Aerodynamic Performance and Wake Characteristics Analysis of Archimedes Spiral Wind Turbine Rotors with Different Blade Angle," Energies, MDPI, vol. 16(1), pages 1-18, December.
    15. Farrugia, R. & Sant, T. & Micallef, D., 2014. "Investigating the aerodynamic performance of a model offshore floating wind turbine," Renewable Energy, Elsevier, vol. 70(C), pages 24-30.
    16. Huanqiang, Zhang & Xiaoxia, Gao & Hongkun, Lu & Qiansheng, Zhao & Xiaoxun, Zhu & Yu, Wang & Fei, Zhao, 2024. "Investigation of a new 3D wake model of offshore floating wind turbines subjected to the coupling effects of wind and wave," Applied Energy, Elsevier, vol. 365(C).
    17. Fu, Shifeng & Jin, Yaqing & Zheng, Yuan & Chamorro, Leonardo P., 2019. "Wake and power fluctuations of a model wind turbine subjected to pitch and roll oscillations," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    18. Rizwan Haider & Xin Li & Wei Shi & Zaibin Lin & Qing Xiao & Haisheng Zhao, 2024. "Review of Computational Fluid Dynamics in the Design of Floating Offshore Wind Turbines," Energies, MDPI, vol. 17(17), pages 1-37, August.
    19. Sang Lee & Matthew Churchfield & Frederick Driscoll & Senu Sirnivas & Jason Jonkman & Patrick Moriarty & Bjόrn Skaare & Finn Gunnar Nielsen & Erik Byklum, 2018. "Load Estimation of Offshore Wind Turbines," Energies, MDPI, vol. 11(7), pages 1-15, July.
    20. van den Broek, Maarten J. & De Tavernier, Delphine & Sanderse, Benjamin & van Wingerden, Jan-Willem, 2022. "Adjoint optimisation for wind farm flow control with a free-vortex wake model," Renewable Energy, Elsevier, vol. 201(P1), pages 752-765.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:20:p:3900-:d:276668. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.