IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v163y2021icp882-909.html
   My bibliography  Save this article

Comparative analysis of different criteria for the prediction of vortex ring state of floating offshore wind turbines

Author

Listed:
  • Dong, Jing
  • Viré, Axelle

Abstract

The wind condition around floating offshore wind turbines (FOWTs) can be largely different from that developed around bottom-mounted wind turbines due to the platform motions. The existing literature identifies four working state of FOWTs, one of them being the vortex ring state (VRS) which may occur as the rotor moves in its own wake. It is potentially a problem that influences the aerodynamic performance and lifetime of FOWTs. It is still unclear when, and to what extent, does the VRS happen to floating offshore wind turbines. The aim of this paper is to quantitatively predict the occurrence of VRS during the operation of FOWTs. Three different criteria are used and compared: the axial induction factor, Wolkovitch’s criterion and Peters’ criterion. The results show that the VRS phenomena may occur for a large range of operating conditions and can be correlated with the minima in the relative wind speed normal to the rotor plane. Also, the probability of occurrence of VRS is smaller for the floating platforms that exhibit the least motions such as the TLP. Finally, Wolkovitch’s criterion seems to be the most suitable one for the VRS prediction, while Peters criterion indicates the initial aerodynamic change and is thus suitable for early warning of VRS.

Suggested Citation

  • Dong, Jing & Viré, Axelle, 2021. "Comparative analysis of different criteria for the prediction of vortex ring state of floating offshore wind turbines," Renewable Energy, Elsevier, vol. 163(C), pages 882-909.
  • Handle: RePEc:eee:renene:v:163:y:2021:i:c:p:882-909
    DOI: 10.1016/j.renene.2020.08.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120312647
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.08.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Thanhtoan Tran & Donghyun Kim & Jinseop Song, 2014. "Computational Fluid Dynamic Analysis of a Floating Offshore Wind Turbine Experiencing Platform Pitching Motion," Energies, MDPI, vol. 7(8), pages 1-16, August.
    2. Jing Dong & Axelle Viré & Carlos Simao Ferreira & Zhangrui Li & Gerard van Bussel, 2019. "A Modified Free Wake Vortex Ring Method for Horizontal-Axis Wind Turbines," Energies, MDPI, vol. 12(20), pages 1-24, October.
    3. Jeon, Minu & Lee, Seungmin & Lee, Soogab, 2014. "Unsteady aerodynamics of offshore floating wind turbines in platform pitching motion using vortex lattice method," Renewable Energy, Elsevier, vol. 65(C), pages 207-212.
    4. Kyle, Ryan & Lee, Yeaw Chu & Früh, Wolf-Gerrit, 2020. "Propeller and vortex ring state for floating offshore wind turbines during surge," Renewable Energy, Elsevier, vol. 155(C), pages 645-657.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dong, Jing & Viré, Axelle & Li, Zhangrui, 2022. "Analysis the vortex ring state and propeller state of floating offshore wind turbines and verification of their prediction criteria by comparing with a CFD model," Renewable Energy, Elsevier, vol. 184(C), pages 15-25.
    2. Dong, Jing & Viré, Axelle, 2022. "The aerodynamics of floating offshore wind turbines in different working states during surge motion," Renewable Energy, Elsevier, vol. 195(C), pages 1125-1136.
    3. Kyle, Ryan & Früh, Wolf-Gerrit, 2022. "The transitional states of a floating wind turbine during high levels of surge," Renewable Energy, Elsevier, vol. 200(C), pages 1469-1489.
    4. Cai, Yefeng & Zhao, Haisheng & Li, Xin & Liu, Yuanchuan, 2023. "Aerodynamic analysis for different operating states of floating offshore wind turbine induced by pitching movement," Energy, Elsevier, vol. 285(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dong, Jing & Viré, Axelle, 2022. "The aerodynamics of floating offshore wind turbines in different working states during surge motion," Renewable Energy, Elsevier, vol. 195(C), pages 1125-1136.
    2. Micallef, Daniel & Rezaeiha, Abdolrahim, 2021. "Floating offshore wind turbine aerodynamics: Trends and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    3. Cai, Yefeng & Zhao, Haisheng & Li, Xin & Liu, Yuanchuan, 2023. "Aerodynamic analysis for different operating states of floating offshore wind turbine induced by pitching movement," Energy, Elsevier, vol. 285(C).
    4. Dong, Jing & Viré, Axelle & Li, Zhangrui, 2022. "Analysis the vortex ring state and propeller state of floating offshore wind turbines and verification of their prediction criteria by comparing with a CFD model," Renewable Energy, Elsevier, vol. 184(C), pages 15-25.
    5. Subbulakshmi, A. & Verma, Mohit & Keerthana, M. & Sasmal, Saptarshi & Harikrishna, P. & Kapuria, Santosh, 2022. "Recent advances in experimental and numerical methods for dynamic analysis of floating offshore wind turbines — An integrated review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    6. Guo, Yize & Wang, Xiaodong & Mei, Yuanhang & Ye, Zhaoliang & Guo, Xiaojiang, 2022. "Effect of coupled platform pitch-surge motions on the aerodynamic characters of a horizontal floating offshore wind turbine," Renewable Energy, Elsevier, vol. 196(C), pages 278-297.
    7. Wang, Xinbao & Cai, Chang & Cai, Shang-Gui & Wang, Tengyuan & Wang, Zekun & Song, Juanjuan & Rong, Xiaomin & Li, Qing'an, 2023. "A review of aerodynamic and wake characteristics of floating offshore wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    8. Rezaeiha, Abdolrahim & Micallef, Daniel, 2021. "Wake interactions of two tandem floating offshore wind turbines: CFD analysis using actuator disc model," Renewable Energy, Elsevier, vol. 179(C), pages 859-876.
    9. Liu, Yuanchuan & Xiao, Qing & Incecik, Atilla & Peyrard, Christophe & Wan, Decheng, 2017. "Establishing a fully coupled CFD analysis tool for floating offshore wind turbines," Renewable Energy, Elsevier, vol. 112(C), pages 280-301.
    10. Fang, Yuan & Duan, Lei & Han, Zhaolong & Zhao, Yongsheng & Yang, He, 2020. "Numerical analysis of aerodynamic performance of a floating offshore wind turbine under pitch motion," Energy, Elsevier, vol. 192(C).
    11. Lee, Hakjin & Lee, Duck-Joo, 2019. "Effects of platform motions on aerodynamic performance and unsteady wake evolution of a floating offshore wind turbine," Renewable Energy, Elsevier, vol. 143(C), pages 9-23.
    12. Wen, Binrong & Tian, Xinliang & Zhang, Qi & Dong, Xingjian & Peng, Zhike & Zhang, Wenming & Wei, Kexiang, 2019. "Wind shear effect induced by the platform pitch motion of a spar-type floating wind turbine," Renewable Energy, Elsevier, vol. 135(C), pages 1186-1199.
    13. Wang, Xinbao & Cai, Chang & Wu, Xianyou & Chen, Yewen & Wang, Tengyuan & Zhong, Xiaohui & Li, Qing'an, 2024. "Numerical validation of the dynamic aerodynamic similarity criterion for floating offshore wind turbines under equivalent pitch motions," Energy, Elsevier, vol. 294(C).
    14. Wen, Binrong & Dong, Xingjian & Tian, Xinliang & Peng, Zhike & Zhang, Wenming & Wei, Kexiang, 2018. "The power performance of an offshore floating wind turbine in platform pitching motion," Energy, Elsevier, vol. 154(C), pages 508-521.
    15. Duan, Lei & Sun, Qinghong & He, Zanyang & Li, Gen, 2022. "Wake topology and energy recovery in floating horizontal-axis wind turbines with harmonic surge motion," Energy, Elsevier, vol. 260(C).
    16. Fu, Shifeng & Zhang, Buen & Zheng, Yuan & Chamorro, Leonardo P., 2020. "In-phase and out-of-phase pitch and roll oscillations of model wind turbines within uniform arrays," Applied Energy, Elsevier, vol. 269(C).
    17. Kyle, Ryan & Früh, Wolf-Gerrit, 2022. "The transitional states of a floating wind turbine during high levels of surge," Renewable Energy, Elsevier, vol. 200(C), pages 1469-1489.
    18. Sun, Qinghong & Li, Gen & Duan, Lei & He, Zanyang, 2023. "The coupling of tower-shadow effect and surge motion intensifies aerodynamic load variability in downwind floating offshore wind turbines," Energy, Elsevier, vol. 282(C).
    19. Huang, Haoda & Liu, Qingsong & Yue, Minnan & Miao, Weipao & Wang, Peilin & Li, Chun, 2023. "Fully coupled aero-hydrodynamic analysis of a biomimetic fractal semi-submersible floating offshore wind turbine under wind-wave excitation conditions," Renewable Energy, Elsevier, vol. 203(C), pages 280-300.
    20. Arabgolarcheh, Alireza & Rouhollahi, Amirhossein & Benini, Ernesto, 2023. "Analysis of middle-to-far wake behind floating offshore wind turbines in the presence of multiple platform motions," Renewable Energy, Elsevier, vol. 208(C), pages 546-560.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:163:y:2021:i:c:p:882-909. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.