IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v260y2022ics0360544222018096.html
   My bibliography  Save this article

Wake topology and energy recovery in floating horizontal-axis wind turbines with harmonic surge motion

Author

Listed:
  • Duan, Lei
  • Sun, Qinghong
  • He, Zanyang
  • Li, Gen

Abstract

Floating horizontal-axis wind turbines (FHAWTs) enable us to harvest offshore wind energy in deep water area. Although the wake structure of an FHAWT causes secondary effects on its own aerodynamic performance, the wake characteristics are significant in both the performance of rear FHAWTs and the layout of floating wind farms, however, not sufficiently understood so far. To this end, a parametric numerical study is conducted to investigate the FHAWT's wake characteristics influenced by platform's surge motion. An improved delayed detached eddy simulation (IDDES) is applied on a 1/50 scale rotor of NREL 5 MW wind turbine, showing that surge motion evidently influences FHAWT's wake structure, as well as its' energy recovery. Specifically, the surge period is the predominant factor that influences FHAWT's wake topology. In addition, the unique vortex ring structures in the wake of the FHAWT under surge motion is reported for the first time. Moreover, the energy recovery of the FHAWT's wake depends on the surge period principally, and may be faster or slower than that of fixed-bottom wind turbines at different positions, indicating that the interval between two adjacent FHAWTs in floating wind farms should be considered carefully depending on prevailing or unprevailing wind directions.

Suggested Citation

  • Duan, Lei & Sun, Qinghong & He, Zanyang & Li, Gen, 2022. "Wake topology and energy recovery in floating horizontal-axis wind turbines with harmonic surge motion," Energy, Elsevier, vol. 260(C).
  • Handle: RePEc:eee:energy:v:260:y:2022:i:c:s0360544222018096
    DOI: 10.1016/j.energy.2022.124907
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222018096
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124907?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Ming & Tan, Lei & Cao, Shuliang, 2020. "Method of dynamic mode decomposition and reconstruction with application to a three-stage multiphase pump," Energy, Elsevier, vol. 208(C).
    2. Sang Lee & Matthew Churchfield & Frederick Driscoll & Senu Sirnivas & Jason Jonkman & Patrick Moriarty & Bjόrn Skaare & Finn Gunnar Nielsen & Erik Byklum, 2018. "Load Estimation of Offshore Wind Turbines," Energies, MDPI, vol. 11(7), pages 1-15, July.
    3. Shuolin Xiao & Di Yang, 2019. "Large-Eddy Simulation-Based Study of Effect of Swell-Induced Pitch Motion on Wake-Flow Statistics and Power Extraction of Offshore Wind Turbines," Energies, MDPI, vol. 12(7), pages 1-17, April.
    4. Farrugia, R. & Sant, T. & Micallef, D., 2014. "Investigating the aerodynamic performance of a model offshore floating wind turbine," Renewable Energy, Elsevier, vol. 70(C), pages 24-30.
    5. Fang, Yuan & Li, Gen & Duan, Lei & Han, Zhaolong & Zhao, Yongsheng, 2021. "Effect of surge motion on rotor aerodynamics and wake characteristics of a floating horizontal-axis wind turbine," Energy, Elsevier, vol. 218(C).
    6. Lee, Hakjin & Lee, Duck-Joo, 2019. "Effects of platform motions on aerodynamic performance and unsteady wake evolution of a floating offshore wind turbine," Renewable Energy, Elsevier, vol. 143(C), pages 9-23.
    7. Stanislav Rockel & Elizabeth Camp & Jonas Schmidt & Joachim Peinke & Raúl Bayoán Cal & Michael Hölling, 2014. "Experimental Study on Influence of Pitch Motion on the Wake of a Floating Wind Turbine Model," Energies, MDPI, vol. 7(4), pages 1-32, March.
    8. Rockel, Stanislav & Peinke, Joachim & Hölling, Michael & Cal, Raúl Bayoán, 2017. "Dynamic wake development of a floating wind turbine in free pitch motion subjected to turbulent inflow generated with an active grid," Renewable Energy, Elsevier, vol. 112(C), pages 1-16.
    9. Fang, Yuan & Duan, Lei & Han, Zhaolong & Zhao, Yongsheng & Yang, He, 2020. "Numerical analysis of aerodynamic performance of a floating offshore wind turbine under pitch motion," Energy, Elsevier, vol. 192(C).
    10. Thomas Sebastian & Matthew Lackner, 2012. "Analysis of the Induction and Wake Evolution of an Offshore Floating Wind Turbine," Energies, MDPI, vol. 5(4), pages 1-33, April.
    11. Tran, Thanh Toan & Kim, Dong-Hyun, 2016. "A CFD study into the influence of unsteady aerodynamic interference on wind turbine surge motion," Renewable Energy, Elsevier, vol. 90(C), pages 204-228.
    12. Lei, Hang & Zhou, Dai & Lu, Jiabao & Chen, Caiyong & Han, Zhaolong & Bao, Yan, 2017. "The impact of pitch motion of a platform on the aerodynamic performance of a floating vertical axis wind turbine," Energy, Elsevier, vol. 119(C), pages 369-383.
    13. Thanhtoan Tran & Donghyun Kim & Jinseop Song, 2014. "Computational Fluid Dynamic Analysis of a Floating Offshore Wind Turbine Experiencing Platform Pitching Motion," Energies, MDPI, vol. 7(8), pages 1-16, August.
    14. Jeon, Minu & Lee, Seungmin & Lee, Soogab, 2014. "Unsteady aerodynamics of offshore floating wind turbines in platform pitching motion using vortex lattice method," Renewable Energy, Elsevier, vol. 65(C), pages 207-212.
    15. Farrugia, R. & Sant, T. & Micallef, D., 2016. "A study on the aerodynamics of a floating wind turbine rotor," Renewable Energy, Elsevier, vol. 86(C), pages 770-784.
    16. Fu, Shifeng & Jin, Yaqing & Zheng, Yuan & Chamorro, Leonardo P., 2019. "Wake and power fluctuations of a model wind turbine subjected to pitch and roll oscillations," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Song, Dongran & Shen, Xutao & Gao, Yang & Wang, Lei & Du, Xin & Xu, Zhiliang & Zhang, Zhihong & Huang, Chaoneng & Yang, Jian & Dong, Mi & Joo, Young Hoo, 2023. "Application of surrogate-assisted global optimization algorithm with dimension-reduction in power optimization of floating offshore wind farm," Applied Energy, Elsevier, vol. 351(C).
    2. Sun, Qinghong & Li, Gen & Duan, Lei & He, Zanyang, 2023. "The coupling of tower-shadow effect and surge motion intensifies aerodynamic load variability in downwind floating offshore wind turbines," Energy, Elsevier, vol. 282(C).
    3. Arabgolarcheh, Alireza & Micallef, Daniel & Rezaeiha, Abdolrahim & Benini, Ernesto, 2023. "Modelling of two tandem floating offshore wind turbines using an actuator line model," Renewable Energy, Elsevier, vol. 216(C).
    4. Zhang, Zhihao & Kuang, Limin & Han, Zhaolong & Zhou, Dai & Zhao, Yongsheng & Bao, Yan & Duan, Lei & Tu, Jiahuang & Chen, Yaoran & Chen, Mingsheng, 2023. "Comparative analysis of bent and basic winglets on performance improvement of horizontal axis wind turbines," Energy, Elsevier, vol. 281(C).
    5. Zhang, Zhihao & Yang, Haoran & Zhao, Yongsheng & Han, Zhaolong & Zhou, Dai & Zhang, Jianhua & Tu, Jiahuang & Chen, Mingsheng, 2024. "A novel wake control strategy for a twin-rotor floating wind turbine: Mitigating wake effect," Energy, Elsevier, vol. 287(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Micallef, Daniel & Rezaeiha, Abdolrahim, 2021. "Floating offshore wind turbine aerodynamics: Trends and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    2. Wang, Xinbao & Cai, Chang & Cai, Shang-Gui & Wang, Tengyuan & Wang, Zekun & Song, Juanjuan & Rong, Xiaomin & Li, Qing'an, 2023. "A review of aerodynamic and wake characteristics of floating offshore wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    3. Zhang, Buen & Jin, Yaqing & Cheng, Shyuan & Zheng, Yuan & Chamorro, Leonardo P., 2022. "On the dynamics of a model wind turbine under passive tower oscillations," Applied Energy, Elsevier, vol. 311(C).
    4. Rezaeiha, Abdolrahim & Micallef, Daniel, 2021. "Wake interactions of two tandem floating offshore wind turbines: CFD analysis using actuator disc model," Renewable Energy, Elsevier, vol. 179(C), pages 859-876.
    5. Fang, Yuan & Li, Gen & Duan, Lei & Han, Zhaolong & Zhao, Yongsheng, 2021. "Effect of surge motion on rotor aerodynamics and wake characteristics of a floating horizontal-axis wind turbine," Energy, Elsevier, vol. 218(C).
    6. Fu, Shifeng & Li, Zheng & Zhu, Weijun & Han, Xingxing & Liang, Xiaoling & Yang, Hua & Shen, Wenzhong, 2023. "Study on aerodynamic performance and wake characteristics of a floating offshore wind turbine under pitch motion," Renewable Energy, Elsevier, vol. 205(C), pages 317-325.
    7. Fang, Yuan & Duan, Lei & Han, Zhaolong & Zhao, Yongsheng & Yang, He, 2020. "Numerical analysis of aerodynamic performance of a floating offshore wind turbine under pitch motion," Energy, Elsevier, vol. 192(C).
    8. Wen, Binrong & Tian, Xinliang & Zhang, Qi & Dong, Xingjian & Peng, Zhike & Zhang, Wenming & Wei, Kexiang, 2019. "Wind shear effect induced by the platform pitch motion of a spar-type floating wind turbine," Renewable Energy, Elsevier, vol. 135(C), pages 1186-1199.
    9. Chen, Guang & Liang, Xi-Feng & Li, Xiao-Bai, 2022. "Modelling of wake dynamics and instabilities of a floating horizontal-axis wind turbine under surge motion," Energy, Elsevier, vol. 239(PB).
    10. Wen, Binrong & Dong, Xingjian & Tian, Xinliang & Peng, Zhike & Zhang, Wenming & Wei, Kexiang, 2018. "The power performance of an offshore floating wind turbine in platform pitching motion," Energy, Elsevier, vol. 154(C), pages 508-521.
    11. Yang, Lin & Liao, Kangping & Ma, Qingwei & Ma, Gang & Sun, Hanbing, 2023. "Investigation of wake characteristics of floating offshore wind turbine with control strategy using actuator curve embedding method," Renewable Energy, Elsevier, vol. 218(C).
    12. Wen, Binrong & Tian, Xinliang & Dong, Xingjian & Peng, Zhike & Zhang, Wenming, 2017. "Influences of surge motion on the power and thrust characteristics of an offshore floating wind turbine," Energy, Elsevier, vol. 141(C), pages 2054-2068.
    13. Arabgolarcheh, Alireza & Micallef, Daniel & Benini, Ernesto, 2023. "The impact of platform motion phase differences on the power and load performance of tandem floating offshore wind turbines," Energy, Elsevier, vol. 284(C).
    14. Lee, Hakjin & Lee, Duck-Joo, 2019. "Effects of platform motions on aerodynamic performance and unsteady wake evolution of a floating offshore wind turbine," Renewable Energy, Elsevier, vol. 143(C), pages 9-23.
    15. Wang, Xinbao & Cai, Chang & Wu, Xianyou & Chen, Yewen & Wang, Tengyuan & Zhong, Xiaohui & Li, Qing'an, 2024. "Numerical validation of the dynamic aerodynamic similarity criterion for floating offshore wind turbines under equivalent pitch motions," Energy, Elsevier, vol. 294(C).
    16. Cai, Yefeng & Zhao, Haisheng & Li, Xin & Liu, Yuanchuan, 2023. "Aerodynamic analysis for different operating states of floating offshore wind turbine induced by pitching movement," Energy, Elsevier, vol. 285(C).
    17. Subbulakshmi, A. & Verma, Mohit & Keerthana, M. & Sasmal, Saptarshi & Harikrishna, P. & Kapuria, Santosh, 2022. "Recent advances in experimental and numerical methods for dynamic analysis of floating offshore wind turbines — An integrated review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    18. Fu, Shifeng & Zhang, Buen & Zheng, Yuan & Chamorro, Leonardo P., 2020. "In-phase and out-of-phase pitch and roll oscillations of model wind turbines within uniform arrays," Applied Energy, Elsevier, vol. 269(C).
    19. Zhang, Yuquan & Wei, Wenqian & Zheng, Jinhai & Peng, Bin & Qian, Yaoru & Li, Chengyi & Zheng, Yuan & Fernandez-Rodriguez, Emmanuel & Yu, An, 2023. "Quantifying the surge-induced response of a floating tidal stream turbine under wave-current flows," Energy, Elsevier, vol. 283(C).
    20. Chen, Ziwen & Wang, Xiaodong & Guo, Yize & Kang, Shun, 2021. "Numerical analysis of unsteady aerodynamic performance of floating offshore wind turbine under platform surge and pitch motions," Renewable Energy, Elsevier, vol. 163(C), pages 1849-1870.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:260:y:2022:i:c:s0360544222018096. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.