IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i18p3504-d266377.html
   My bibliography  Save this article

Performance Analysis of Synchronous Reluctance Motor with Limited Amount of Permanent Magnet

Author

Listed:
  • Duc-Kien Ngo

    (Department of Systems and Naval Mechatronic Engineering, National Cheng Kung University, Tainan 70101, Taiwan)

  • Min-Fu Hsieh

    (Department of Electrical Engineering, National Cheng Kung University, Tainan 70101, Taiwan)

Abstract

This paper analyzes the performance of a synchronous reluctance motor (SynRM) equipped with a limited amount of a permanent magnet (PM). This is conventionally implemented by inserting PMs in rotor flux barriers, and this is often called the PM-assisted SynRM (PMa-SynRM). However, common PMa-SynRMs could be vulnerable to irreversible demagnetization. Therefore, motor performance and PM demagnetization should be simultaneously considered, and this would require the PM to be properly arranged. In this paper, various rotor configurations are carefully studied and compared in order to maximize the motor performance, avoid irreversible demagnetization and achieve higher PM utilization. Moreover, the field weakening capability is investigated and improved by regulating armature excitation. A particular rotor type with flux intensification was found to possess higher PM utilization, lower demagnetization possibility with fairly high performance. Thus, suitable rotor configurations are recommended for certain applications.

Suggested Citation

  • Duc-Kien Ngo & Min-Fu Hsieh, 2019. "Performance Analysis of Synchronous Reluctance Motor with Limited Amount of Permanent Magnet," Energies, MDPI, vol. 12(18), pages 1-20, September.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:18:p:3504-:d:266377
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/18/3504/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/18/3504/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nezih Gokhan Ozcelik & Ugur Emre Dogru & Murat Imeryuz & Lale T. Ergene, 2019. "Synchronous Reluctance Motor vs. Induction Motor at Low-Power Industrial Applications: Design and Comparison," Energies, MDPI, vol. 12(11), pages 1-20, June.
    2. Thanh Anh Huynh & Min-Fu Hsieh, 2018. "Performance Analysis of Permanent Magnet Motors for Electric Vehicles (EV) Traction Considering Driving Cycles," Energies, MDPI, vol. 11(6), pages 1-24, May.
    3. Mohamed Nabil Fathy Ibrahim & Essam Rashad & Peter Sergeant, 2017. "Performance Comparison of Conventional Synchronous Reluctance Machines and PM-Assisted Types with Combined Star–Delta Winding," Energies, MDPI, vol. 10(10), pages 1-18, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ryszard Palka & Kamil Cierzniewski & Marcin Wardach & Pawel Prajzendanc, 2023. "Research on Innovative Hybrid Excited Synchronous Machine," Energies, MDPI, vol. 16(18), pages 1-14, September.
    2. Abdul Ghani Olabi & Tabbi Wilberforce & Mohammad Ali Abdelkareem & Mohamad Ramadan, 2021. "Critical Review of Flywheel Energy Storage System," Energies, MDPI, vol. 14(8), pages 1-33, April.
    3. Carlos Candelo-Zuluaga & Jordi-Roger Riba & Dinesh V. Thangamuthu & Antoni Garcia, 2020. "Detection of Partial Demagnetization Faults in Five-Phase Permanent Magnet Assisted Synchronous Reluctance Machines," Energies, MDPI, vol. 13(13), pages 1-17, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Armagan Bozkurt & Ahmet Fevzi Baba & Yusuf Oner, 2021. "Design of Outer-Rotor Permanent-Magnet-Assisted Synchronous Reluctance Motor for Electric Vehicles," Energies, MDPI, vol. 14(13), pages 1-12, June.
    2. Yi Du & Jiayan Zhou & Zhuofan He & Yandong Sun & Ming Kong, 2022. "A Dual-Harmonic Pole-Changing Motor with Split Permanent Magnet Pole," Energies, MDPI, vol. 15(20), pages 1-14, October.
    3. Paweł Idziak & Krzysztof Kowalski, 2021. "Analysis of Selected Operating States of the Line Start Synchronous Reluctance Motor Using the Finite Element Method," Energies, MDPI, vol. 14(20), pages 1-18, October.
    4. Hamidreza Heidari & Anton Rassõlkin & Ants Kallaste & Toomas Vaimann & Ekaterina Andriushchenko & Anouar Belahcen & Dmitry V. Lukichev, 2021. "A Review of Synchronous Reluctance Motor-Drive Advancements," Sustainability, MDPI, vol. 13(2), pages 1-37, January.
    5. Yuanzhe Zhao & Linjie Ren & Zhiming Liao & Guobin Lin, 2021. "A Novel Model Predictive Direct Torque Control Method for Improving Steady-State Performance of the Synchronous Reluctance Motor," Energies, MDPI, vol. 14(8), pages 1-18, April.
    6. Mariusz Korkosz & Jan Prokop & Bartlomiej Pakla & Grzegorz Podskarbi & Piotr Bogusz, 2020. "Analysis of Open-Circuit Fault in Fault-Tolerant BLDC Motors with Different Winding Configurations," Energies, MDPI, vol. 13(20), pages 1-27, October.
    7. Giovanni Bucci & Fabrizio Ciancetta & Edoardo Fiorucci & Simone Mari & Maria Anna Segreto, 2019. "The Measurement of Additional Losses in Induction Motors: Discussion about the Actually Achievable Uncertainty," Energies, MDPI, vol. 13(1), pages 1-13, December.
    8. Pavol Rafajdus & Valeria Hrabovcova & Pavel Lehocky & Pavol Makys & Filip Holub, 2018. "Effect of Saturation on Field Oriented Control of the New Designed Reluctance Synchronous Motor," Energies, MDPI, vol. 11(11), pages 1-10, November.
    9. Yang Sun & Shuhui Li & Malek Ramezani & Bharat Balasubramanian & Bian Jin & Yixiang Gao, 2019. "DSP Implementation of a Neural Network Vector Controller for IPM Motor Drives," Energies, MDPI, vol. 12(13), pages 1-17, July.
    10. Chiweta E. Abunike & Udochukwu B. Akuru & Ogbonnaya I. Okoro & Chukwuemeka C. Awah, 2023. "Sizing, Modeling, and Performance Comparison of Squirrel-Cage Induction and Wound-Field Flux Switching Motors," Mathematics, MDPI, vol. 11(16), pages 1-24, August.
    11. Chih-Hong Lin & Chang-Chou Hwang, 2018. "High Performances Design of a Six-Phase Synchronous Reluctance Motor Using Multi-Objective Optimization with Altered Bee Colony Optimization and Taguchi Method," Energies, MDPI, vol. 11(10), pages 1-14, October.
    12. Peter Stumpf & Tamás Tóth-Katona, 2023. "Recent Achievements in the Control of Interior Permanent-Magnet Synchronous Machine Drives: A Comprehensive Overview of the State of the Art," Energies, MDPI, vol. 16(13), pages 1-46, July.
    13. Pedro P. C. Bhagubai & João G. Sarrico & João F. P. Fernandes & P. J. Costa Branco, 2020. "Design, Multi-Objective Optimization, and Prototyping of a 20 kW 8000 rpm Permanent Magnet Synchronous Motor for a Competition Electric Vehicle," Energies, MDPI, vol. 13(10), pages 1-24, May.
    14. Hyunwoo Kim & Yeji Park & Seung-Taek Oh & Hyungkwan Jang & Sung-Hong Won & Yon-Do Chun & Ju Lee, 2020. "A Study on the Rotor Design of Line Start Synchronous Reluctance Motor for IE4 Efficiency and Improving Power Factor," Energies, MDPI, vol. 13(21), pages 1-15, November.
    15. Edison Gundabattini & Arkadiusz Mystkowski & Adam Idzkowski & Raja Singh R. & Darius Gnanaraj Solomon, 2021. "Thermal Mapping of a High-Speed Electric Motor Used for Traction Applications and Analysis of Various Cooling Methods—A Review," Energies, MDPI, vol. 14(5), pages 1-32, March.
    16. Chao Wu & Jun Yang & Qi Li, 2020. "GPIO-Based Nonlinear Predictive Control for Flux-Weakening Current Control of the IPMSM Servo System," Energies, MDPI, vol. 13(7), pages 1-21, April.
    17. Marcin Jastrzębski & Jacek Kabziński, 2021. "Approximation of Permanent Magnet Motor Flux Distribution by Partially Informed Neural Networks," Energies, MDPI, vol. 14(18), pages 1-21, September.
    18. Vadim Kazakbaev & Aleksey Paramonov & Vladimir Dmitrievskii & Vladimir Prakht & Victor Goman, 2022. "Indirect Efficiency Measurement Method for Line-Start Permanent Magnet Synchronous Motors," Mathematics, MDPI, vol. 10(7), pages 1-14, March.
    19. Rajesh Poola & Tsuyoshi Hanamoto, 2022. "Automated QFT-Based PI Tuning for Speed Control of SynRM Drive with Analytical Selection of QFT Control Specifications," Energies, MDPI, vol. 15(2), pages 1-17, January.
    20. Hyunwoo Kim & Yeji Park & Huai-Cong Liu & Pil-Wan Han & Ju Lee, 2020. "Study on Line-Start Permanent Magnet Assistance Synchronous Reluctance Motor for Improving Efficiency and Power Factor," Energies, MDPI, vol. 13(2), pages 1-15, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:18:p:3504-:d:266377. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.