IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i20p5321-d427188.html
   My bibliography  Save this article

Analysis of Open-Circuit Fault in Fault-Tolerant BLDC Motors with Different Winding Configurations

Author

Listed:
  • Mariusz Korkosz

    (The Faculty of Electrical and Computer Engineering, Rzeszow University of Technology, Al. Powstańców Warszawy 12, 35-959 Rzeszow, Poland)

  • Jan Prokop

    (The Faculty of Electrical and Computer Engineering, Rzeszow University of Technology, Al. Powstańców Warszawy 12, 35-959 Rzeszow, Poland)

  • Bartlomiej Pakla

    (The Faculty of Electrical and Computer Engineering, Rzeszow University of Technology, Al. Powstańców Warszawy 12, 35-959 Rzeszow, Poland)

  • Grzegorz Podskarbi

    (The Faculty of Electrical and Computer Engineering, Rzeszow University of Technology, Al. Powstańców Warszawy 12, 35-959 Rzeszow, Poland)

  • Piotr Bogusz

    (The Faculty of Electrical and Computer Engineering, Rzeszow University of Technology, Al. Powstańców Warszawy 12, 35-959 Rzeszow, Poland)

Abstract

In this study, tests were carried out on a brushless permanent magnet DC motor with different winding configurations. Three configurations were compared: star, delta and combined star–delta. A mathematical model was constructed for the motor, taking into account the different winding configurations. An analysis of the operation of the motor in the different configurations was performed, based on numerical calculations. The use of different winding configurations affects the properties of the motor. This is significant in the case of the occurrence of various fault states. Based on numerical calculations, an analysis of an open-circuit fault in one of the phases of the motor was performed. Fast Fourier Transform—FFT analysis of the artificial neutral-point voltage was used for the detection of fault states. The results were verified by tests carried out under laboratory conditions. It was shown that the winding configuration has an impact on the behaviour of the motor in the case of an open circuit in one of the phases. The classical star configuration is the worst of the possible arrangements. The most favourable in this respect is the delta configuration. In the case of the combined star–delta configuration, the consequences of the fault depend on the location of the open circuit.

Suggested Citation

  • Mariusz Korkosz & Jan Prokop & Bartlomiej Pakla & Grzegorz Podskarbi & Piotr Bogusz, 2020. "Analysis of Open-Circuit Fault in Fault-Tolerant BLDC Motors with Different Winding Configurations," Energies, MDPI, vol. 13(20), pages 1-27, October.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:20:p:5321-:d:427188
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/20/5321/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/20/5321/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zia Ullah & Jin Hur, 2018. "A Comprehensive Review of Winding Short Circuit Fault and Irreversible Demagnetization Fault Detection in PM Type Machines," Energies, MDPI, vol. 11(12), pages 1-27, November.
    2. Mohamed Nabil Fathy Ibrahim & Essam Rashad & Peter Sergeant, 2017. "Performance Comparison of Conventional Synchronous Reluctance Machines and PM-Assisted Types with Combined Star–Delta Winding," Energies, MDPI, vol. 10(10), pages 1-18, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Piotr Mynarek & Janusz Kołodziej & Adrian Młot & Marcin Kowol & Marian Łukaniszyn, 2021. "Influence of a Winding Short-Circuit Fault on Demagnetization Risk and Local Magnetic Forces in V-Shaped Interior PMSM with Distributed and Concentrated Winding," Energies, MDPI, vol. 14(16), pages 1-16, August.
    2. Fugang Zhai & Liu Yang & Wenqi Fu & Haisheng Tong & Tianyu Zhao, 2022. "The Effects of Permanent Magnet Segmentations on Electromagnetic Performance in Ironless Brushless DC Motors," Energies, MDPI, vol. 15(2), pages 1-18, January.
    3. Krzysztof Kolano & Bartosz Drzymała & Jakub Gęca, 2021. "Sinusoidal Control of a Brushless DC Motor with Misalignment of Hall Sensors," Energies, MDPI, vol. 14(13), pages 1-13, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hamidreza Heidari & Anton Rassõlkin & Ants Kallaste & Toomas Vaimann & Ekaterina Andriushchenko & Anouar Belahcen & Dmitry V. Lukichev, 2021. "A Review of Synchronous Reluctance Motor-Drive Advancements," Sustainability, MDPI, vol. 13(2), pages 1-37, January.
    2. Chih-Hong Lin & Chang-Chou Hwang, 2018. "High Performances Design of a Six-Phase Synchronous Reluctance Motor Using Multi-Objective Optimization with Altered Bee Colony Optimization and Taguchi Method," Energies, MDPI, vol. 11(10), pages 1-14, October.
    3. Armagan Bozkurt & Ahmet Fevzi Baba & Yusuf Oner, 2021. "Design of Outer-Rotor Permanent-Magnet-Assisted Synchronous Reluctance Motor for Electric Vehicles," Energies, MDPI, vol. 14(13), pages 1-12, June.
    4. Syidy Ab Rasid & Konstantinos N. Gyftakis & Markus Mueller, 2023. "Comparative Investigation of Three Diagnostic Methods Applied to Direct-Drive Permanent Magnet Machines Suffering from Demagnetization," Energies, MDPI, vol. 16(6), pages 1-18, March.
    5. Piotr Mynarek & Janusz Kołodziej & Adrian Młot & Marcin Kowol & Marian Łukaniszyn, 2021. "Influence of a Winding Short-Circuit Fault on Demagnetization Risk and Local Magnetic Forces in V-Shaped Interior PMSM with Distributed and Concentrated Winding," Energies, MDPI, vol. 14(16), pages 1-16, August.
    6. Zia Ullah & Bilal Ahmad Lodhi & Jin Hur, 2020. "Detection and Identification of Demagnetization and Bearing Faults in PMSM Using Transfer Learning-Based VGG," Energies, MDPI, vol. 13(15), pages 1-17, July.
    7. Duc-Kien Ngo & Min-Fu Hsieh, 2019. "Performance Analysis of Synchronous Reluctance Motor with Limited Amount of Permanent Magnet," Energies, MDPI, vol. 12(18), pages 1-20, September.
    8. Milan Oravec & Pavol Lipovský & Miroslav Šmelko & Pavel Adamčík & Mirosław Witoś & Jerzy Kwaśniewski, 2021. "Low-Frequency Magnetic Fields in Diagnostics of Low-Speed Electrical and Mechanical Systems," Sustainability, MDPI, vol. 13(16), pages 1-23, August.
    9. Ahmed Belkhadir & Remus Pusca & Driss Belkhayat & Raphaël Romary & Youssef Zidani, 2023. "Analytical Modeling, Analysis and Diagnosis of External Rotor PMSM with Stator Winding Unbalance Fault," Energies, MDPI, vol. 16(7), pages 1-23, April.
    10. Carlos Candelo-Zuluaga & Jordi-Roger Riba & Dinesh V. Thangamuthu & Antoni Garcia, 2020. "Detection of Partial Demagnetization Faults in Five-Phase Permanent Magnet Assisted Synchronous Reluctance Machines," Energies, MDPI, vol. 13(13), pages 1-17, July.
    11. Jing Tang & Yongheng Yang & Jie Chen & Ruichang Qiu & Zhigang Liu, 2019. "Characteristics Analysis and Measurement of Inverter-Fed Induction Motors for Stator and Rotor Fault Detection," Energies, MDPI, vol. 13(1), pages 1-17, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:20:p:5321-:d:427188. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.