IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i10p2465-d357867.html
   My bibliography  Save this article

Design, Multi-Objective Optimization, and Prototyping of a 20 kW 8000 rpm Permanent Magnet Synchronous Motor for a Competition Electric Vehicle

Author

Listed:
  • Pedro P. C. Bhagubai

    (IDMEC, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal)

  • João G. Sarrico

    (Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal)

  • João F. P. Fernandes

    (IDMEC, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal)

  • P. J. Costa Branco

    (IDMEC, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal)

Abstract

A high-performance 20 kW, 20 Nm, 8000 rpm, spoke-type interior permanent magnet motor to be integrated into a FormulaStudent electric car’s powertrain has been designed to meet demanding performance requirements for its driving cycle. This paper describes key steps in the design optimization, analysis, fabrication, and testing of this machine. Design optimization used the non-dominated sorting genetic algorithm II (NSGA-II) coupled with a hybrid analytical/finite element model to reduce the computational time, achieving a torque and efficiency of 20 Nm and 98.6%, respectively. A prototype has been constructed. The final motor design has been tested, where experimental nominal torque and efficiency have reached 18.2 Nm and 90%, respectively. Design challenges regarding the manufacturing are presented, justified, and discussed in detail. Test results were conducted to evaluate reliability and motor temperatures with and without water refrigeration at nominal current. Despite those adjustments in the optimized design, one shows that the impact on the car’s lap time was low, going from 77.3 s for the ideal optimized motor to 78.9 s for the prototyped motor.

Suggested Citation

  • Pedro P. C. Bhagubai & João G. Sarrico & João F. P. Fernandes & P. J. Costa Branco, 2020. "Design, Multi-Objective Optimization, and Prototyping of a 20 kW 8000 rpm Permanent Magnet Synchronous Motor for a Competition Electric Vehicle," Energies, MDPI, vol. 13(10), pages 1-24, May.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:10:p:2465-:d:357867
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/10/2465/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/10/2465/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Thanh Anh Huynh & Min-Fu Hsieh, 2018. "Performance Analysis of Permanent Magnet Motors for Electric Vehicles (EV) Traction Considering Driving Cycles," Energies, MDPI, vol. 11(6), pages 1-24, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Song, Zaixin & Liu, Chunhua, 2022. "Energy efficient design and implementation of electric machines in air transport propulsion system," Applied Energy, Elsevier, vol. 322(C).
    2. Youguang Guo & Lin Liu & Xin Ba & Haiyan Lu & Gang Lei & Wenliang Yin & Jianguo Zhu, 2022. "Measurement and Modeling of Magnetic Materials under 3D Vectorial Magnetization for Electrical Machine Design and Analysis," Energies, MDPI, vol. 16(1), pages 1-11, December.
    3. Pedro P. C. Bhagubai & Luís F. D. Bucho & João F. P. Fernandes & P. J. Costa Branco, 2022. "Optimal Design of an Interior Permanent Magnet Synchronous Motor with Cobalt Iron Core," Energies, MDPI, vol. 15(8), pages 1-21, April.
    4. Marko Merdžan, 2021. "Performance Analysis of High-Speed Electric Machines Supplied by PWM Inverters Based on the Harmonic Modeling Method," Energies, MDPI, vol. 14(9), pages 1-35, May.
    5. Jiongjiong Cai & Peng Ke & Xiao Qu & Zihui Wang, 2022. "Research on the Design of Auxiliary Generator for Enthalpy Reduction and Steady Speed Scroll Expander," Energies, MDPI, vol. 15(9), pages 1-17, April.
    6. João F. P. Fernandes & Pedro P. C. Bhagubai & Paulo J. C. Branco, 2022. "Recent Developments in Electrical Machine Design for the Electrification of Industrial and Transportation Systems," Energies, MDPI, vol. 15(17), pages 1-13, September.
    7. Jiahui Huang & Weinong Fu & Shuangxia Niu & Xing Zhao & Yanding Bi & Zhenyang Qiao, 2022. "A General Pattern-Based Design Optimization for Asymmetric Spoke-Type Interior PM Machines," Energies, MDPI, vol. 15(24), pages 1-14, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yi Du & Jiayan Zhou & Zhuofan He & Yandong Sun & Ming Kong, 2022. "A Dual-Harmonic Pole-Changing Motor with Split Permanent Magnet Pole," Energies, MDPI, vol. 15(20), pages 1-14, October.
    2. Pavol Rafajdus & Valeria Hrabovcova & Pavel Lehocky & Pavol Makys & Filip Holub, 2018. "Effect of Saturation on Field Oriented Control of the New Designed Reluctance Synchronous Motor," Energies, MDPI, vol. 11(11), pages 1-10, November.
    3. Yang Sun & Shuhui Li & Malek Ramezani & Bharat Balasubramanian & Bian Jin & Yixiang Gao, 2019. "DSP Implementation of a Neural Network Vector Controller for IPM Motor Drives," Energies, MDPI, vol. 12(13), pages 1-17, July.
    4. Armagan Bozkurt & Ahmet Fevzi Baba & Yusuf Oner, 2021. "Design of Outer-Rotor Permanent-Magnet-Assisted Synchronous Reluctance Motor for Electric Vehicles," Energies, MDPI, vol. 14(13), pages 1-12, June.
    5. Peter Stumpf & Tamás Tóth-Katona, 2023. "Recent Achievements in the Control of Interior Permanent-Magnet Synchronous Machine Drives: A Comprehensive Overview of the State of the Art," Energies, MDPI, vol. 16(13), pages 1-46, July.
    6. Edison Gundabattini & Arkadiusz Mystkowski & Adam Idzkowski & Raja Singh R. & Darius Gnanaraj Solomon, 2021. "Thermal Mapping of a High-Speed Electric Motor Used for Traction Applications and Analysis of Various Cooling Methods—A Review," Energies, MDPI, vol. 14(5), pages 1-32, March.
    7. Chao Wu & Jun Yang & Qi Li, 2020. "GPIO-Based Nonlinear Predictive Control for Flux-Weakening Current Control of the IPMSM Servo System," Energies, MDPI, vol. 13(7), pages 1-21, April.
    8. Marcin Jastrzębski & Jacek Kabziński, 2021. "Approximation of Permanent Magnet Motor Flux Distribution by Partially Informed Neural Networks," Energies, MDPI, vol. 14(18), pages 1-21, September.
    9. Duc-Kien Ngo & Min-Fu Hsieh, 2019. "Performance Analysis of Synchronous Reluctance Motor with Limited Amount of Permanent Magnet," Energies, MDPI, vol. 12(18), pages 1-20, September.
    10. Namala Narasimhulu & R. S. R. Krishnam Naidu & Przemysław Falkowski-Gilski & Parameshachari Bidare Divakarachari & Upendra Roy, 2022. "Energy Management for PV Powered Hybrid Storage System in Electric Vehicles Using Artificial Neural Network and Aquila Optimizer Algorithm," Energies, MDPI, vol. 15(22), pages 1-21, November.
    11. Zeyang Fan & Hong Yi & Jian Xu & Kun Xie & Yue Qi & Sailin Ren & Hongdong Wang, 2021. "Performance Study and Optimization Design of High-Speed Amorphous Alloy Induction Motor," Energies, MDPI, vol. 14(9), pages 1-19, April.
    12. Huimin Li & Shoudao Huang & Derong Luo & Jian Gao & Peng Fan, 2018. "Dynamic DC-link Voltage Adjustment for Electric Vehicles Considering the Cross Saturation Effects," Energies, MDPI, vol. 11(8), pages 1-22, August.
    13. Giampaolo Buticchi & David Gerada & Luigi Alberti & Michael Galea & Pat Wheeler & Serhiy Bozhko & Sergei Peresada & He Zhang & Chengming Zhang & Chris Gerada, 2019. "Challenges of the Optimization of a High-Speed Induction Machine for Naval Applications," Energies, MDPI, vol. 12(12), pages 1-20, June.
    14. Pedram Asef & Ramon Bargallo & Andrew Lapthorn & Davide Tavernini & Lingyun Shao & Aldo Sorniotti, 2021. "Assessment of the Energy Consumption and Drivability Performance of an IPMSM-Driven Electric Vehicle Using Different Buried Magnet Arrangements," Energies, MDPI, vol. 14(5), pages 1-22, March.
    15. Dimitrios Rimpas & Stavrοs D. Kaminaris & Dimitrios D. Piromalis & George Vokas & Konstantinos G. Arvanitis & Christos-Spyridon Karavas, 2023. "Comparative Review of Motor Technologies for Electric Vehicles Powered by a Hybrid Energy Storage System Based on Multi-Criteria Analysis," Energies, MDPI, vol. 16(6), pages 1-24, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:10:p:2465-:d:357867. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.