IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i7p1056-d779508.html
   My bibliography  Save this article

Indirect Efficiency Measurement Method for Line-Start Permanent Magnet Synchronous Motors

Author

Listed:
  • Vadim Kazakbaev

    (Department of Electrical Engineering, Ural Federal University, 620002 Yekaterinburg, Russia)

  • Aleksey Paramonov

    (Department of Electrical Engineering, Ural Federal University, 620002 Yekaterinburg, Russia)

  • Vladimir Dmitrievskii

    (Department of Electrical Engineering, Ural Federal University, 620002 Yekaterinburg, Russia)

  • Vladimir Prakht

    (Department of Electrical Engineering, Ural Federal University, 620002 Yekaterinburg, Russia)

  • Victor Goman

    (Nizhniy Tagil Technological Institute, Ural Federal University, 622000 Nizhniy Tagil, Russia)

Abstract

Despite the great potential and the high performance of energy-efficient line-start permanent magnet synchronous motors (LSPMSMs), their developers face a great deal of difficulties, one of which is the lack of reliable and accurate testing methods for such electrical machines. In this paper, we propose a new method for indirectly determining the efficiency of LSPMSM through the summation of individual loss components. The standard input-output method usually used for these machines is based on torque measurement, requires expensive measuring equipment, and, as a rule, has great uncertainty. Contrarily, the proposed method does not require direct measurement of torque and mechanical power on the shaft and is less sensitive to measurement uncertainties. The theoretical substantiation of the proposed method and its experimental verification using a commercially available four-pole LSPMSM with a rated power of 0.55 kW are presented. Satisfactory convergence of the experimental results obtained using the standard input-output method and using the proposed indirect method is shown.

Suggested Citation

  • Vadim Kazakbaev & Aleksey Paramonov & Vladimir Dmitrievskii & Vladimir Prakht & Victor Goman, 2022. "Indirect Efficiency Measurement Method for Line-Start Permanent Magnet Synchronous Motors," Mathematics, MDPI, vol. 10(7), pages 1-14, March.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:7:p:1056-:d:779508
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/7/1056/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/7/1056/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xin Ba & Zhenjie Gong & Youguang Guo & Chengning Zhang & Jianguo Zhu, 2022. "Development of Equivalent Circuit Models of Permanent Magnet Synchronous Motors Considering Core Loss," Energies, MDPI, vol. 15(6), pages 1-18, March.
    2. Anton Dianov & Alecksey Anuchin, 2021. "Design of Constraints for Seeking Maximum Torque per Ampere Techniques in an Interior Permanent Magnet Synchronous Motor Control," Mathematics, MDPI, vol. 9(21), pages 1-21, November.
    3. Nezih Gokhan Ozcelik & Ugur Emre Dogru & Murat Imeryuz & Lale T. Ergene, 2019. "Synchronous Reluctance Motor vs. Induction Motor at Low-Power Industrial Applications: Design and Comparison," Energies, MDPI, vol. 12(11), pages 1-20, June.
    4. Hassanpour Isfahani, Arash & Vaez-Zadeh, Sadegh, 2009. "Line start permanent magnet synchronous motors: Challenges and opportunities," Energy, Elsevier, vol. 34(11), pages 1755-1763.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hyun-Jong Park & Hyeon-Bin Hong & Ki-Doek Lee, 2022. "A Study on a Design Considering the Transient State of a Line-Start Permanent Magnet Synchronous Motor Satisfying the Requirements of the IE4 Efficiency Class," Energies, MDPI, vol. 15(24), pages 1-14, December.
    2. Aleksey Paramonov & Safarbek Oshurbekov & Vadim Kazakbaev & Vladimir Prakht & Vladimir Dmitrievskii, 2023. "Investigation of the Effect of the Voltage Drop and Cable Length on the Success of Starting the Line-Start Permanent Magnet Motor in the Drive of a Centrifugal Pump Unit," Mathematics, MDPI, vol. 11(3), pages 1-18, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paweł Idziak & Krzysztof Kowalski, 2021. "Analysis of Selected Operating States of the Line Start Synchronous Reluctance Motor Using the Finite Element Method," Energies, MDPI, vol. 14(20), pages 1-18, October.
    2. Ibrahem Hussein & Zakariya Al-Hamouz & M. A. Abido & Abdulaziz Milhem, 2018. "On the Mathematical Modeling of Line-Start Permanent Magnet Synchronous Motors under Static Eccentricity," Energies, MDPI, vol. 11(1), pages 1-17, January.
    3. Yuanzhe Zhao & Linjie Ren & Zhiming Liao & Guobin Lin, 2021. "A Novel Model Predictive Direct Torque Control Method for Improving Steady-State Performance of the Synchronous Reluctance Motor," Energies, MDPI, vol. 14(8), pages 1-18, April.
    4. Wojciech Szelag & Cezary Jedryczka & Mariusz Baranski & Milena Kurzawa, 2024. "Design, Analysis and Experimental Verification of a Coreless Permanent Magnet Synchronous Motor," Energies, MDPI, vol. 17(7), pages 1-17, March.
    5. Giovanni Bucci & Fabrizio Ciancetta & Edoardo Fiorucci & Simone Mari & Maria Anna Segreto, 2019. "The Measurement of Additional Losses in Induction Motors: Discussion about the Actually Achievable Uncertainty," Energies, MDPI, vol. 13(1), pages 1-13, December.
    6. Gustav Mörée & Mats Leijon, 2022. "Overview of Hybrid Excitation in Electrical Machines," Energies, MDPI, vol. 15(19), pages 1-38, October.
    7. Yongjie Yang & Xudong Liu, 2022. "A Novel Nonsingular Terminal Sliding Mode Observer-Based Sensorless Control for Electrical Drive System," Mathematics, MDPI, vol. 10(17), pages 1-16, August.
    8. Chiweta E. Abunike & Udochukwu B. Akuru & Ogbonnaya I. Okoro & Chukwuemeka C. Awah, 2023. "Sizing, Modeling, and Performance Comparison of Squirrel-Cage Induction and Wound-Field Flux Switching Motors," Mathematics, MDPI, vol. 11(16), pages 1-24, August.
    9. Lian Hou & Youguang Guo & Xin Ba & Gang Lei & Jianguo Zhu, 2024. "Efficiency Improvement of Permanent Magnet Synchronous Motors Using Model Predictive Control Considering Core Loss," Energies, MDPI, vol. 17(4), pages 1-18, February.
    10. Bo Yan & Xianglin Li & Yue Sun & Yingjie Tan, 2023. "End Effect Equivalence in the 2-D Finite Element Analysis of a Line-Start Permanent Magnet Synchronous Motor with Hybrid Solid Rotor," Energies, MDPI, vol. 16(19), pages 1-15, September.
    11. Hyunwoo Kim & Yeji Park & Seung-Taek Oh & Hyungkwan Jang & Sung-Hong Won & Yon-Do Chun & Ju Lee, 2020. "A Study on the Rotor Design of Line Start Synchronous Reluctance Motor for IE4 Efficiency and Improving Power Factor," Energies, MDPI, vol. 13(21), pages 1-15, November.
    12. Mitja Garmut & Simon Steentjes & Martin Petrun, 2024. "Optimization of an IPMSM for Constant-Angle Square-Wave Control of a BLDC Drive," Mathematics, MDPI, vol. 12(10), pages 1-25, May.
    13. Arun Shankar, Vishnu Kalaiselvan & Umashankar, Subramaniam & Paramasivam, Shanmugam & Hanigovszki, Norbert, 2016. "A comprehensive review on energy efficiency enhancement initiatives in centrifugal pumping system," Applied Energy, Elsevier, vol. 181(C), pages 495-513.
    14. Duc-Kien Ngo & Min-Fu Hsieh, 2019. "Performance Analysis of Synchronous Reluctance Motor with Limited Amount of Permanent Magnet," Energies, MDPI, vol. 12(18), pages 1-20, September.
    15. Rajesh Poola & Tsuyoshi Hanamoto, 2022. "Automated QFT-Based PI Tuning for Speed Control of SynRM Drive with Analytical Selection of QFT Control Specifications," Energies, MDPI, vol. 15(2), pages 1-17, January.
    16. Jonathan Muñoz Tabora & Maria Emília de Lima Tostes & Edson Ortiz de Matos & Thiago Mota Soares & Ubiratan Holanda Bezerra, 2020. "Voltage Harmonic Impacts on Electric Motors: A Comparison between IE2, IE3 and IE4 Induction Motor Classes," Energies, MDPI, vol. 13(13), pages 1-18, June.
    17. Hyunwoo Kim & Yeji Park & Huai-Cong Liu & Pil-Wan Han & Ju Lee, 2020. "Study on Line-Start Permanent Magnet Assistance Synchronous Reluctance Motor for Improving Efficiency and Power Factor," Energies, MDPI, vol. 13(2), pages 1-15, January.
    18. Hasanuzzaman, M. & Rahim, N.A. & Saidur, R. & Kazi, S.N., 2011. "Energy savings and emissions reductions for rewinding and replacement of industrial motor," Energy, Elsevier, vol. 36(1), pages 233-240.
    19. Mustafa Tumbek & Selami Kesler, 2019. "Design and Implementation of a Low Power Outer-Rotor Line-Start Permanent-Magnet Synchronous Motor for Ultra-Light Electric Vehicles," Energies, MDPI, vol. 12(16), pages 1-20, August.
    20. Ma, Shaohua & Wang, Shuli & Zhang, Chengning & Zhang, Shuo, 2017. "A method to improve the efficiency of an electric aircraft propulsion system," Energy, Elsevier, vol. 140(P1), pages 436-443.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:7:p:1056-:d:779508. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.