IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i14p2724-d248875.html
   My bibliography  Save this article

Aerodynamically Interacting Vertical-Axis Wind Turbines: Performance Enhancement and Three-Dimensional Flow

Author

Listed:
  • Ian D. Brownstein

    (Mechanical Engineering, Stanford University, Stanford, CA 94305, USA)

  • Nathaniel J. Wei

    (Mechanical Engineering, Stanford University, Stanford, CA 94305, USA)

  • John O. Dabiri

    (Mechanical Engineering and Civil & Environmental Engineering, Stanford University, Stanford, CA 94305, USA)

Abstract

This study examined three-dimensional, volumetric mean velocity fields and corresponding performance measurements for an isolated vertical-axis wind turbine (VAWT) and for co- and counter-rotating pairs of VAWTs with varying incident wind direction and turbine spacings. The purpose was to identify turbine configurations and flow mechanisms that can improve the power densities of VAWT arrays in wind farms. All experiments were conducted at a Reynolds number of R e D = 7.3 × 10 4 . In the paired arrays, performance enhancement was observed for both the upstream and downstream turbines. Increases in downstream turbine performance correlate with bluff–body accelerations around the upstream turbine, which increase the incident freestream velocity on the downstream turbine in certain positions. Decreases in downstream turbine performance are determined by its position in the upstream turbine’s wake. Changes in upstream turbine performance are related to variations in the surrounding flow field due to the presence of the downstream rotor. For the most robust array configuration studied, an average 14% increase in array performance over approximately a 50° range of wind direction was observed. Additionally, three-dimensional vortex interactions behind pairs of VAWT were observed that can replenish momentum in the wake by advection rather than turbulent diffusion. These effects and their implications for wind-farm design are discussed.

Suggested Citation

  • Ian D. Brownstein & Nathaniel J. Wei & John O. Dabiri, 2019. "Aerodynamically Interacting Vertical-Axis Wind Turbines: Performance Enhancement and Three-Dimensional Flow," Energies, MDPI, vol. 12(14), pages 1-23, July.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:14:p:2724-:d:248875
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/14/2724/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/14/2724/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zanforlin, Stefania & Nishino, Takafumi, 2016. "Fluid dynamic mechanisms of enhanced power generation by closely spaced vertical axis wind turbines," Renewable Energy, Elsevier, vol. 99(C), pages 1213-1226.
    2. Dowon Han & Young Gun Heo & Nak Joon Choi & Sang Hyun Nam & Kyoung Ho Choi & Kyung Chun Kim, 2018. "Design, Fabrication, and Performance Test of a 100-W Helical-Blade Vertical-Axis Wind Turbine at Low Tip-Speed Ratio," Energies, MDPI, vol. 11(6), pages 1-17, June.
    3. Ahmadi-Baloutaki, Mojtaba & Carriveau, Rupp & Ting, David S-K., 2016. "A wind tunnel study on the aerodynamic interaction of vertical axis wind turbines in array configurations," Renewable Energy, Elsevier, vol. 96(PA), pages 904-913.
    4. Möllerström, Erik & Gipe, Paul & Beurskens, Jos & Ottermo, Fredric, 2019. "A historical review of vertical axis wind turbines rated 100 kW and above," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 1-13.
    5. Shigetomi, Akinari & Murai, Yuichi & Tasaka, Yuji & Takeda, Yasushi, 2011. "Interactive flow field around two Savonius turbines," Renewable Energy, Elsevier, vol. 36(2), pages 536-545.
    6. Eboibi, Okeoghene & Danao, Louis Angelo M. & Howell, Robert J., 2016. "Experimental investigation of the influence of solidity on the performance and flow field aerodynamics of vertical axis wind turbines at low Reynolds numbers," Renewable Energy, Elsevier, vol. 92(C), pages 474-483.
    7. Shaheen, Mohammed & Abdallah, Shaaban, 2016. "Development of efficient vertical axis wind turbine clustered farms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 237-244.
    8. Tescione, G. & Ragni, D. & He, C. & Simão Ferreira, C.J. & van Bussel, G.J.W., 2014. "Near wake flow analysis of a vertical axis wind turbine by stereoscopic particle image velocimetry," Renewable Energy, Elsevier, vol. 70(C), pages 47-61.
    9. Sina Shamsoddin & Fernando Porté-Agel, 2014. "Large Eddy Simulation of Vertical Axis Wind Turbine Wakes," Energies, MDPI, vol. 7(2), pages 1-23, February.
    10. Rezaeiha, Abdolrahim & Montazeri, Hamid & Blocken, Bert, 2018. "Towards optimal aerodynamic design of vertical axis wind turbines: Impact of solidity and number of blades," Energy, Elsevier, vol. 165(PB), pages 1129-1148.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniel Micallef, 2023. "Advancements in Offshore Vertical Axis Wind Turbines," Energies, MDPI, vol. 16(4), pages 1-3, February.
    2. Ihor Shchur & Volodymyr Klymko & Shengbai Xie & David Schmidt, 2023. "Design Features and Numerical Investigation of Counter-Rotating VAWT with Co-Axial Rotors Displaced from Each Other along the Axis of Rotation," Energies, MDPI, vol. 16(11), pages 1-24, June.
    3. Villeneuve, Thierry & Winckelmans, Grégoire & Dumas, Guy, 2021. "Increasing the efficiency of vertical-axis turbines through improved blade support structures," Renewable Energy, Elsevier, vol. 169(C), pages 1386-1401.
    4. Hansen, Joachim Toftegaard & Mahak, Mahak & Tzanakis, Iakovos, 2021. "Numerical modelling and optimization of vertical axis wind turbine pairs: A scale up approach," Renewable Energy, Elsevier, vol. 171(C), pages 1371-1381.
    5. Galih Bangga, 2022. "Progress and Outlook in Wind Energy Research," Energies, MDPI, vol. 15(18), pages 1-5, September.
    6. Barnes, Andrew & Marshall-Cross, Daniel & Hughes, Ben Richard, 2021. "Towards a standard approach for future Vertical Axis Wind Turbine aerodynamics research and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    7. Posa, Antonio, 2022. "Wake characterization of paired cross-flow turbines," Renewable Energy, Elsevier, vol. 196(C), pages 1064-1094.
    8. Gauvin-Tremblay, Olivier & Dumas, Guy, 2022. "Hydrokinetic turbine array analysis and optimization integrating blockage effects and turbine-wake interactions," Renewable Energy, Elsevier, vol. 181(C), pages 851-869.
    9. Chloë Dorge & Eric Louis Bibeau, 2023. "Deep Learning-Based Prediction of Unsteady Reynolds-Averaged Navier-Stokes Solutions for Vertical-Axis Turbines," Energies, MDPI, vol. 16(3), pages 1-33, January.
    10. Villeneuve, Thierry & Dumas, Guy, 2021. "Impact of some design considerations on the wake recovery of vertical-axis turbines," Renewable Energy, Elsevier, vol. 180(C), pages 1419-1438.
    11. Manuel Viqueira-Moreira & Esteban Ferrer, 2020. "Insights into the Aeroacoustic Noise Generation for Vertical Axis Turbines in Close Proximity," Energies, MDPI, vol. 13(16), pages 1-18, August.
    12. Jia Guo & Liping Lei, 2020. "Flow Characteristics of a Straight-Bladed Vertical Axis Wind Turbine with Inclined Pitch Axes," Energies, MDPI, vol. 13(23), pages 1-23, November.
    13. Jeffrey E. Silva & Louis Angelo M. Danao, 2021. "Varying VAWT Cluster Configuration and the Effect on Individual Rotor and Overall Cluster Performance," Energies, MDPI, vol. 14(6), pages 1-22, March.
    14. Ji Hao Zhang & Fue-Sang Lien & Eugene Yee, 2022. "Investigations of Vertical-Axis Wind-Turbine Group Synergy Using an Actuator Line Model," Energies, MDPI, vol. 15(17), pages 1-22, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barnes, Andrew & Marshall-Cross, Daniel & Hughes, Ben Richard, 2021. "Towards a standard approach for future Vertical Axis Wind Turbine aerodynamics research and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    2. Krzysztof Rogowski & Martin Otto Laver Hansen & Galih Bangga, 2020. "Performance Analysis of a H-Darrieus Wind Turbine for a Series of 4-Digit NACA Airfoils," Energies, MDPI, vol. 13(12), pages 1-28, June.
    3. Jeffrey E. Silva & Louis Angelo M. Danao, 2021. "Varying VAWT Cluster Configuration and the Effect on Individual Rotor and Overall Cluster Performance," Energies, MDPI, vol. 14(6), pages 1-22, March.
    4. Villeneuve, Thierry & Dumas, Guy, 2021. "Impact of some design considerations on the wake recovery of vertical-axis turbines," Renewable Energy, Elsevier, vol. 180(C), pages 1419-1438.
    5. Peng, H.Y. & Han, Z.D. & Liu, H.J. & Lin, K. & Lam, H.F., 2020. "Assessment and optimization of the power performance of twin vertical axis wind turbines via numerical simulations," Renewable Energy, Elsevier, vol. 147(P1), pages 43-54.
    6. Ni, Lulu & Miao, Weipao & Li, Chun & Liu, Qingsong, 2021. "Impacts of Gurney flap and solidity on the aerodynamic performance of vertical axis wind turbines in array configurations," Energy, Elsevier, vol. 215(PA).
    7. Peng, H.Y. & Liu, M.N. & Liu, H.J. & Lin, K., 2022. "Optimization of twin vertical axis wind turbines through large eddy simulations and Taguchi method," Energy, Elsevier, vol. 240(C).
    8. Posa, Antonio, 2022. "Wake characterization of paired cross-flow turbines," Renewable Energy, Elsevier, vol. 196(C), pages 1064-1094.
    9. Yoshifumi Jodai & Yutaka Hara, 2021. "Wind Tunnel Experiments on Interaction between Two Closely Spaced Vertical-Axis Wind Turbines in Side-by-Side Arrangement," Energies, MDPI, vol. 14(23), pages 1-19, November.
    10. Chen, Wei-Hsin & Chen, Ching-Ying & Huang, Chun-Yen & Hwang, Chii-Jong, 2017. "Power output analysis and optimization of two straight-bladed vertical-axis wind turbines," Applied Energy, Elsevier, vol. 185(P1), pages 223-232.
    11. Ji Hao Zhang & Fue-Sang Lien & Eugene Yee, 2022. "Investigations of Vertical-Axis Wind-Turbine Group Synergy Using an Actuator Line Model," Energies, MDPI, vol. 15(17), pages 1-22, August.
    12. Kun Wang & Li Zou & Aimin Wang & Peidong Zhao & Yichen Jiang, 2020. "Wind Tunnel Study on Wake Instability of Twin H-Rotor Vertical-Axis Turbines," Energies, MDPI, vol. 13(17), pages 1-18, August.
    13. Reddy, K. Bheemalingeswara & Bhosale, Amit C., 2024. "Effect of number of blades on performance and wake recovery for a vertical axis helical hydrokinetic turbine," Energy, Elsevier, vol. 299(C).
    14. Li, Qing'an & Maeda, Takao & Kamada, Yasunari & Shimizu, Kento & Ogasawara, Tatsuhiko & Nakai, Alisa & Kasuya, Takuji, 2017. "Effect of rotor aspect ratio and solidity on a straight-bladed vertical axis wind turbine in three-dimensional analysis by the panel method," Energy, Elsevier, vol. 121(C), pages 1-9.
    15. Tjiu, Willy & Marnoto, Tjukup & Mat, Sohif & Ruslan, Mohd Hafidz & Sopian, Kamaruzzaman, 2015. "Darrieus vertical axis wind turbine for power generation I: Assessment of Darrieus VAWT configurations," Renewable Energy, Elsevier, vol. 75(C), pages 50-67.
    16. Meana-Fernández, Andrés & Solís-Gallego, Irene & Fernández Oro, Jesús Manuel & Argüelles Díaz, Katia María & Velarde-Suárez, Sandra, 2018. "Parametrical evaluation of the aerodynamic performance of vertical axis wind turbines for the proposal of optimized designs," Energy, Elsevier, vol. 147(C), pages 504-517.
    17. Kuang, Limin & Katsuchi, Hiroshi & Zhou, Dai & Chen, Yaoran & Han, Zhaolong & Zhang, Kai & Wang, Jiaqi & Bao, Yan & Cao, Yong & Liu, Yijie, 2023. "Strategy for mitigating wake interference between offshore vertical-axis wind turbines: Evaluation of vertically staggered arrangement," Applied Energy, Elsevier, vol. 351(C).
    18. Vergaerde, Antoine & De Troyer, Tim & Standaert, Lieven & Kluczewska-Bordier, Joanna & Pitance, Denis & Immas, Alexandre & Silvert, Frédéric & Runacres, Mark C., 2020. "Experimental validation of the power enhancement of a pair of vertical-axis wind turbines," Renewable Energy, Elsevier, vol. 146(C), pages 181-187.
    19. Keisar, David & Arava, Idan & Greenblatt, David, 2024. "Dynamic-stall-driven vertical axis wind turbine: An experimental parametric study," Applied Energy, Elsevier, vol. 365(C).
    20. Lam, H.F. & Peng, H.Y., 2017. "Measurements of the wake characteristics of co- and counter-rotating twin H-rotor vertical axis wind turbines," Energy, Elsevier, vol. 131(C), pages 13-26.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:14:p:2724-:d:248875. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.