IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v240y2022ics0360544221028097.html
   My bibliography  Save this article

Optimization of twin vertical axis wind turbines through large eddy simulations and Taguchi method

Author

Listed:
  • Peng, H.Y.
  • Liu, M.N.
  • Liu, H.J.
  • Lin, K.

Abstract

The aerodynamic performance of twin configurations of vertical axis wind turbines (VAWTs) was systematically analyzed through large eddy simulations (LESs). The reliability of the computational results was validated through comparisons with experimental data reported in the literature. The Taguchi method was used in the optimization analysis, and an L16 (45) orthogonal table of five critical operation parameters—pitch angle (β), turbine spacing (S/D), aspect ratio (η), solidity ratio (σ), and rotational direction (γ)—with four levels was designed. Range analysis was applied to the results of the orthogonal test. Pitch angle was found to have the greatest extent of impact on power performance, whereas rotational direction exerted the least impact. Additionally, turbine spacing exercised the second greatest impact, followed by aspect ratio and thence solidity ratio. Accordingly, the parameter settings for the optimal and the worst twin array units were determined. The power performance of the optimal and worst twin array units increased by 13.72% and 7.39%, respectively, relative to their standalone counterparts. Moreover, analyses of the flow mechanisms indicated that to reduce power loss, tip winglets or tapered blade ends should be used in twin array units, especially those with small aspect ratios.

Suggested Citation

  • Peng, H.Y. & Liu, M.N. & Liu, H.J. & Lin, K., 2022. "Optimization of twin vertical axis wind turbines through large eddy simulations and Taguchi method," Energy, Elsevier, vol. 240(C).
  • Handle: RePEc:eee:energy:v:240:y:2022:i:c:s0360544221028097
    DOI: 10.1016/j.energy.2021.122560
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221028097
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.122560?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tummala, Abhishiktha & Velamati, Ratna Kishore & Sinha, Dipankur Kumar & Indraja, V. & Krishna, V. Hari, 2016. "A review on small scale wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1351-1371.
    2. Zanforlin, Stefania & Nishino, Takafumi, 2016. "Fluid dynamic mechanisms of enhanced power generation by closely spaced vertical axis wind turbines," Renewable Energy, Elsevier, vol. 99(C), pages 1213-1226.
    3. Howell, Robert & Qin, Ning & Edwards, Jonathan & Durrani, Naveed, 2010. "Wind tunnel and numerical study of a small vertical axis wind turbine," Renewable Energy, Elsevier, vol. 35(2), pages 412-422.
    4. Lam, H.F. & Peng, H.Y., 2017. "Measurements of the wake characteristics of co- and counter-rotating twin H-rotor vertical axis wind turbines," Energy, Elsevier, vol. 131(C), pages 13-26.
    5. Sahu, Bikash Kumar, 2018. "Wind energy developments and policies in China: A short review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1393-1405.
    6. Douak, M. & Aouachria, Z. & Rabehi, R. & Allam, N., 2018. "Wind energy systems: Analysis of the self-starting physics of vertical axis wind turbine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1602-1610.
    7. Peng, H.Y. & Liu, H.J. & Yang, J.H., 2021. "A review on the wake aerodynamics of H-rotor vertical axis wind turbines," Energy, Elsevier, vol. 232(C).
    8. Tescione, G. & Ragni, D. & He, C. & Simão Ferreira, C.J. & van Bussel, G.J.W., 2014. "Near wake flow analysis of a vertical axis wind turbine by stereoscopic particle image velocimetry," Renewable Energy, Elsevier, vol. 70(C), pages 47-61.
    9. Rezaeiha, Abdolrahim & Kalkman, Ivo & Blocken, Bert, 2017. "CFD simulation of a vertical axis wind turbine operating at a moderate tip speed ratio: Guidelines for minimum domain size and azimuthal increment," Renewable Energy, Elsevier, vol. 107(C), pages 373-385.
    10. Lund, H. & Mathiesen, B.V., 2009. "Energy system analysis of 100% renewable energy systems—The case of Denmark in years 2030 and 2050," Energy, Elsevier, vol. 34(5), pages 524-531.
    11. Karthikeyan, N. & Kalidasa Murugavel, K. & Arun Kumar, S. & Rajakumar, S., 2015. "Review of aerodynamic developments on small horizontal axis wind turbine blade," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 801-822.
    12. Balduzzi, Francesco & Bianchini, Alessandro & Maleci, Riccardo & Ferrara, Giovanni & Ferrari, Lorenzo, 2016. "Critical issues in the CFD simulation of Darrieus wind turbines," Renewable Energy, Elsevier, vol. 85(C), pages 419-435.
    13. Zuo, Wei & Wang, Xiaodong & Kang, Shun, 2016. "Numerical simulations on the wake effect of H-type vertical axis wind turbines," Energy, Elsevier, vol. 106(C), pages 691-700.
    14. Lei, Hang & Zhou, Dai & Bao, Yan & Chen, Caiyong & Ma, Ning & Han, Zhaolong, 2017. "Numerical simulations of the unsteady aerodynamics of a floating vertical axis wind turbine in surge motion," Energy, Elsevier, vol. 127(C), pages 1-17.
    15. Chen, Wei-Hsin & Chen, Ching-Ying & Huang, Chun-Yen & Hwang, Chii-Jong, 2017. "Power output analysis and optimization of two straight-bladed vertical-axis wind turbines," Applied Energy, Elsevier, vol. 185(P1), pages 223-232.
    16. Mohamed, M.H., 2012. "Performance investigation of H-rotor Darrieus turbine with new airfoil shapes," Energy, Elsevier, vol. 47(1), pages 522-530.
    17. Ahmadi-Baloutaki, Mojtaba & Carriveau, Rupp & Ting, David S-K., 2016. "A wind tunnel study on the aerodynamic interaction of vertical axis wind turbines in array configurations," Renewable Energy, Elsevier, vol. 96(PA), pages 904-913.
    18. Blusseau, Pierre & Patel, Minoo H., 2012. "Gyroscopic effects on a large vertical axis wind turbine mounted on a floating structure," Renewable Energy, Elsevier, vol. 46(C), pages 31-42.
    19. Li, Qing'an & Maeda, Takao & Kamada, Yasunari & Shimizu, Kento & Ogasawara, Tatsuhiko & Nakai, Alisa & Kasuya, Takuji, 2017. "Effect of rotor aspect ratio and solidity on a straight-bladed vertical axis wind turbine in three-dimensional analysis by the panel method," Energy, Elsevier, vol. 121(C), pages 1-9.
    20. Rezaeiha, Abdolrahim & Kalkman, Ivo & Blocken, Bert, 2017. "Effect of pitch angle on power performance and aerodynamics of a vertical axis wind turbine," Applied Energy, Elsevier, vol. 197(C), pages 132-150.
    21. Lam, H.F. & Peng, H.Y., 2016. "Study of wake characteristics of a vertical axis wind turbine by two- and three-dimensional computational fluid dynamics simulations," Renewable Energy, Elsevier, vol. 90(C), pages 386-398.
    22. Peng, H.Y. & Han, Z.D. & Liu, H.J. & Lin, K. & Lam, H.F., 2020. "Assessment and optimization of the power performance of twin vertical axis wind turbines via numerical simulations," Renewable Energy, Elsevier, vol. 147(P1), pages 43-54.
    23. Islam, Mazharul & Ting, David S.-K. & Fartaj, Amir, 2008. "Aerodynamic models for Darrieus-type straight-bladed vertical axis wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(4), pages 1087-1109, May.
    24. Lei Song & Hong-Zhao Liu & Zong-Xiao Yang, 2016. "Orthogonal Analysis Based Performance Optimization for Vertical Axis Wind Turbine," Mathematical Problems in Engineering, Hindawi, vol. 2016, pages 1-11, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Zhongyun & Chen, Jian & Li, Chun, 2023. "Research on the adaptability of dynamic pitch control strategies on H-type VAWT close-range arrays by simulation study," Renewable Energy, Elsevier, vol. 218(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barnes, Andrew & Marshall-Cross, Daniel & Hughes, Ben Richard, 2021. "Towards a standard approach for future Vertical Axis Wind Turbine aerodynamics research and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    2. Peng, H.Y. & Han, Z.D. & Liu, H.J. & Lin, K. & Lam, H.F., 2020. "Assessment and optimization of the power performance of twin vertical axis wind turbines via numerical simulations," Renewable Energy, Elsevier, vol. 147(P1), pages 43-54.
    3. Thé, Jesse & Yu, Hesheng, 2017. "A critical review on the simulations of wind turbine aerodynamics focusing on hybrid RANS-LES methods," Energy, Elsevier, vol. 138(C), pages 257-289.
    4. Ma, Ning & Lei, Hang & Han, Zhaolong & Zhou, Dai & Bao, Yan & Zhang, Kai & Zhou, Lei & Chen, Caiyong, 2018. "Airfoil optimization to improve power performance of a high-solidity vertical axis wind turbine at a moderate tip speed ratio," Energy, Elsevier, vol. 150(C), pages 236-252.
    5. Peng, H.Y. & Liu, H.J. & Yang, J.H., 2021. "A review on the wake aerodynamics of H-rotor vertical axis wind turbines," Energy, Elsevier, vol. 232(C).
    6. Hand, Brian & Kelly, Ger & Cashman, Andrew, 2021. "Aerodynamic design and performance parameters of a lift-type vertical axis wind turbine: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    7. Kuang, Limin & Katsuchi, Hiroshi & Zhou, Dai & Chen, Yaoran & Han, Zhaolong & Zhang, Kai & Wang, Jiaqi & Bao, Yan & Cao, Yong & Liu, Yijie, 2023. "Strategy for mitigating wake interference between offshore vertical-axis wind turbines: Evaluation of vertically staggered arrangement," Applied Energy, Elsevier, vol. 351(C).
    8. Rezaeiha, Abdolrahim & Montazeri, Hamid & Blocken, Bert, 2018. "Towards optimal aerodynamic design of vertical axis wind turbines: Impact of solidity and number of blades," Energy, Elsevier, vol. 165(PB), pages 1129-1148.
    9. Liu, Qingsong & Miao, Weipao & Ye, Qi & Li, Chun, 2022. "Performance assessment of an innovative Gurney flap for straight-bladed vertical axis wind turbine," Renewable Energy, Elsevier, vol. 185(C), pages 1124-1138.
    10. Lam, H.F. & Peng, H.Y., 2017. "Measurements of the wake characteristics of co- and counter-rotating twin H-rotor vertical axis wind turbines," Energy, Elsevier, vol. 131(C), pages 13-26.
    11. Posa, Antonio, 2022. "Wake characterization of paired cross-flow turbines," Renewable Energy, Elsevier, vol. 196(C), pages 1064-1094.
    12. Rezaeiha, Abdolrahim & Kalkman, Ivo & Blocken, Bert, 2017. "Effect of pitch angle on power performance and aerodynamics of a vertical axis wind turbine," Applied Energy, Elsevier, vol. 197(C), pages 132-150.
    13. Ji Hao Zhang & Fue-Sang Lien & Eugene Yee, 2022. "Investigations of Vertical-Axis Wind-Turbine Group Synergy Using an Actuator Line Model," Energies, MDPI, vol. 15(17), pages 1-22, August.
    14. Zhang, Lijun & Gu, Jiawei & Zhu, Huaibao & Hu, Kuoliang & Li, Xiang & Jiao, Liuyang & Miao, Junjie & Liu, Jing & Wang, Zhiwei, 2021. "Rationality research of the adjustment law for the blade pitch angle of H-type vertical-axis wind turbines," Renewable Energy, Elsevier, vol. 167(C), pages 484-496.
    15. Kun Wang & Li Zou & Aimin Wang & Peidong Zhao & Yichen Jiang, 2020. "Wind Tunnel Study on Wake Instability of Twin H-Rotor Vertical-Axis Turbines," Energies, MDPI, vol. 13(17), pages 1-18, August.
    16. Jin, Xin & Zhao, Gaoyuan & Gao, KeJun & Ju, Wenbin, 2015. "Darrieus vertical axis wind turbine: Basic research methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 212-225.
    17. Zanforlin, Stefania & Deluca, Stefano, 2018. "Effects of the Reynolds number and the tip losses on the optimal aspect ratio of straight-bladed Vertical Axis Wind Turbines," Energy, Elsevier, vol. 148(C), pages 179-195.
    18. Wong, Kok Hoe & Chong, Wen Tong & Poh, Sin Chew & Shiah, Yui-Chuin & Sukiman, Nazatul Liana & Wang, Chin-Tsan, 2018. "3D CFD simulation and parametric study of a flat plate deflector for vertical axis wind turbine," Renewable Energy, Elsevier, vol. 129(PA), pages 32-55.
    19. Peng, H.Y. & Lam, H.F., 2016. "Turbulence effects on the wake characteristics and aerodynamic performance of a straight-bladed vertical axis wind turbine by wind tunnel tests and large eddy simulations," Energy, Elsevier, vol. 109(C), pages 557-568.
    20. Xu, Zhongyun & Chen, Jian & Li, Chun, 2023. "Research on the adaptability of dynamic pitch control strategies on H-type VAWT close-range arrays by simulation study," Renewable Energy, Elsevier, vol. 218(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:240:y:2022:i:c:s0360544221028097. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.