IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i13p2527-d244622.html
   My bibliography  Save this article

Water Hammer Control Analysis of an Intelligent Surge Tank with Spring Self-Adaptive Auxiliary Control System

Author

Listed:
  • Wuyi Wan

    (Department of Hydraulic Engineering, College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China)

  • Boran Zhang

    (Department of Hydraulic Engineering, College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
    Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, UK)

  • Xiaoyi Chen

    (Department of Hydraulic Engineering, College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China)

  • Jijian Lian

    (State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300072, China)

Abstract

The water hammer can cause great risks in water supply pipe systems. A surge tank is a kind of general water hammer control device. In order to improve the behavior of the surge tank, a self-adaptive auxiliary control (SAC) system was proposed in this paper. The system can optimize the response of the surge tank according to the transient pressure. The numerical model and the matched boundary conditions were established to simulate the improved surge tank and optimize the SAC system. Then, various transient responses were simulated by the proposed model with different parameters set. The proposed system is validated by comparing the water hammer process in a river-pipe-valve (RLV) system with and without SAC. The results show that the SAC can greatly improve the water hammer control of the pipeline and the water level oscillation of the surge tank. With the SAC system, the required vertical size of the surge tank can be significantly reduced with the desired water hammer control function.

Suggested Citation

  • Wuyi Wan & Boran Zhang & Xiaoyi Chen & Jijian Lian, 2019. "Water Hammer Control Analysis of an Intelligent Surge Tank with Spring Self-Adaptive Auxiliary Control System," Energies, MDPI, vol. 12(13), pages 1-19, July.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:13:p:2527-:d:244622
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/13/2527/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/13/2527/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Riasi, Alireza & Tazraei, Pedram, 2017. "Numerical analysis of the hydraulic transient response in the presence of surge tanks and relief valves," Renewable Energy, Elsevier, vol. 107(C), pages 138-146.
    2. Jianzhong Zhou & Yanhe Xu & Yang Zheng & Yuncheng Zhang, 2017. "Optimization of Guide Vane Closing Schemes of Pumped Storage Hydro Unit Using an Enhanced Multi-Objective Gravitational Search Algorithm," Energies, MDPI, vol. 10(7), pages 1-23, July.
    3. Guo, Wencheng & Yang, Jiandong & Teng, Yi, 2017. "Surge wave characteristics for hydropower station with upstream series double surge tanks in load rejection transient," Renewable Energy, Elsevier, vol. 108(C), pages 488-501.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yong Wang & Nan Wei & Dejun Wan & Shouxi Wang & Zongming Yuan, 2019. "Numerical Simulation for Preheating New Submarine Hot Oil Pipelines," Energies, MDPI, vol. 12(18), pages 1-26, September.
    2. Mohammad Mahmoudi-Rad & Mohammad Najafzadeh, 2023. "Effects of Surge Tank Geometry on the Water Hammer Phenomenon: Numerical Investigation," Sustainability, MDPI, vol. 15(3), pages 1-19, January.
    3. Sanghyun Kim & Dooyong Choi, 2022. "Dimensionless Impedance Method for General Design of Surge Tank in Simple Pipeline Systems," Energies, MDPI, vol. 15(10), pages 1-13, May.
    4. Michał Kubrak & Agnieszka Malesińska & Apoloniusz Kodura & Kamil Urbanowicz & Paweł Bury & Michał Stosiak, 2021. "Water Hammer Control Using Additional Branched HDPE Pipe," Energies, MDPI, vol. 14(23), pages 1-18, November.
    5. Michał Kubrak & Agnieszka Malesińska & Apoloniusz Kodura & Kamil Urbanowicz & Michał Stosiak, 2021. "Hydraulic Transients in Viscoelastic Pipeline System with Sudden Cross-Section Changes," Energies, MDPI, vol. 14(14), pages 1-12, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammad Mahmoudi-Rad & Mohammad Najafzadeh, 2023. "Effects of Surge Tank Geometry on the Water Hammer Phenomenon: Numerical Investigation," Sustainability, MDPI, vol. 15(3), pages 1-19, January.
    2. Lan, Xinyao & Jin, Jiahui & Xu, Beibei & Chen, Diyi & Egusquiza, Mònica & Kim, Jin-Hyuk & Egusquiza, Eduard & Jafar, Nejadali & Xu, Lin & Kuang, Yuan, 2022. "Physical model test and parametric optimization of a hydroelectric generating system with a coaxial shaft surge tank," Renewable Energy, Elsevier, vol. 200(C), pages 880-899.
    3. Wuyi Wan & Boran Zhang, 2018. "Investigation of Water Hammer Protection in Water Supply Pipeline Systems Using an Intelligent Self-Controlled Surge Tank," Energies, MDPI, vol. 11(6), pages 1-16, June.
    4. Xu, Beibei & Chen, Diyi & Patelli, Edoardo & Shen, Haijun & Park, Jae-Hyun, 2019. "Mathematical model and parametric uncertainty analysis of a hydraulic generating system," Renewable Energy, Elsevier, vol. 136(C), pages 1217-1230.
    5. Ma, Weichao & Yan, Wenjie & Yang, Jiebin & He, Xianghui & Yang, Jiandong & Yang, Weijia, 2022. "Experimental and numerical investigation on head losses of a complex throttled surge tank for refined hydropower plant simulation," Renewable Energy, Elsevier, vol. 186(C), pages 264-279.
    6. Hu, Jinhong & Yang, Jiebin & He, Xianghui & Zhao, Zhigao & Yang, Jiandong, 2023. "Transient analysis of a hydropower plant with a super-long headrace tunnel during load acceptance: Instability mechanism and measurement verification," Energy, Elsevier, vol. 263(PA).
    7. Damian Liszka & Zbigniew Krzemianowski & Tomasz Węgiel & Dariusz Borkowski & Andrzej Polniak & Konrad Wawrzykowski & Artur Cebula, 2022. "Alternative Solutions for Small Hydropower Plants," Energies, MDPI, vol. 15(4), pages 1-31, February.
    8. Wei Huang & Jiming Ma & Xinlei Guo & Huokun Li & Jiazhen Li & Gang Wang, 2021. "Stability Criterion for Mass Oscillation in the Surge Tank of a Hydropower Station Considering Velocity Head and Throttle Loss," Energies, MDPI, vol. 14(17), pages 1-19, August.
    9. Daqing Zhou & Huixiang Chen & Jie Zhang & Shengwen Jiang & Jia Gui & Chunxia Yang & An Yu, 2019. "Numerical Study on Flow Characteristics in a Francis Turbine during Load Rejection," Energies, MDPI, vol. 12(4), pages 1-15, February.
    10. Rezghi, Ali & Riasi, Alireza & Tazraei, Pedram, 2020. "Multi-objective optimization of hydraulic transient condition in a pump-turbine hydropower considering the wicket-gates closing law and the surge tank position," Renewable Energy, Elsevier, vol. 148(C), pages 478-491.
    11. Xu, Beibei & Jun, Hong-Bae & Chen, Diyi & Li, Huanhuan & Zhang, Jingjing & Cavalcante Blanco, Claudio Jose & Shen, Haijun, 2019. "Stability analysis of a hydro-turbine governing system considering inner energy losses," Renewable Energy, Elsevier, vol. 134(C), pages 258-266.
    12. Zhang, Jian & Qiu, Weixin & Wang, Qinyi & Yao, Tianyu & Hu, Chao & Liu, Yi, 2024. "Extreme water level of surge chamber in hydropower plant under combined operating conditions," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    13. Michał Kubrak & Agnieszka Malesińska & Apoloniusz Kodura & Kamil Urbanowicz & Paweł Bury & Michał Stosiak, 2021. "Water Hammer Control Using Additional Branched HDPE Pipe," Energies, MDPI, vol. 14(23), pages 1-18, November.
    14. Wencheng Guo & Yang Liu & Fangle Qu & Xinyu Xu, 2020. "A Review of Critical Stable Sectional Areas for the Surge Tanks of Hydropower Stations," Energies, MDPI, vol. 13(23), pages 1-25, December.
    15. Xinran Guo & Yuanchu Cheng & Jiada Wei & Yitian Luo, 2021. "Stability Analysis of Different Regulation Modes of Hydropower Units," Energies, MDPI, vol. 14(7), pages 1-19, March.
    16. Gongcheng Liu & Xudi Qiu & Jiayi Ma & Diyi Chen & Xiao Liang, 2022. "Influence of Flexible Generation Mode on the Stability of Hydropower Generation System: Stability Assessment of Part-Load Operation," Energies, MDPI, vol. 15(11), pages 1-19, May.
    17. Li, Huanhuan & Xu, Beibei & Riasi, Alireza & Szulc, Przemyslaw & Chen, Diyi & M'zoughi, Fares & Skjelbred, Hans Ivar & Kong, Jiehong & Tazraei, Pedram, 2019. "Performance evaluation in enabling safety for a hydropower generation system," Renewable Energy, Elsevier, vol. 143(C), pages 1628-1642.
    18. Daqing Zhou & Huixiang Chen & Languo Zhang, 2018. "Investigation of Pumped Storage Hydropower Power-Off Transient Process Using 3D Numerical Simulation Based on SP-VOF Hybrid Model," Energies, MDPI, vol. 11(4), pages 1-16, April.
    19. Yixuan Guo & Xiao Liang & Ziyu Niu & Zezhou Cao & Liuwei Lei & Hualin Xiong & Diyi Chen, 2021. "Vibration Characteristics of a Hydroelectric Generating System with Different Hydraulic-Mechanical-Electric Parameters in a Sudden Load Increasing Process," Energies, MDPI, vol. 14(21), pages 1-21, November.
    20. Liu, Dong & Li, Chaoshun & Tan, Xiaoqiang & Lu, Xueding & Malik, O.P., 2021. "Damping characteristics analysis of hydropower units under full operating conditions and control parameters: Accurate quantitative evaluation based on refined models," Applied Energy, Elsevier, vol. 292(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:13:p:2527-:d:244622. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.