IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v134y2019icp258-266.html
   My bibliography  Save this article

Stability analysis of a hydro-turbine governing system considering inner energy losses

Author

Listed:
  • Xu, Beibei
  • Jun, Hong-Bae
  • Chen, Diyi
  • Li, Huanhuan
  • Zhang, Jingjing
  • Cavalcante Blanco, Claudio Jose
  • Shen, Haijun

Abstract

The output power of the hydro-turbine is a key component in precisely modeling the stability characteristics of a hydro-turbine governing system (HTGS), especially in working conditions that is far away the optimum operating condition. In this study, first, we formulate the energy losses of HTGS's components to present the hydro-turbine's output power and utilize it to establish a novel mathematical model of HTGS. Second, we perform global sensitivity analysis to extract sensitive parameters of the conversion efficiency, optimize the values of model parameters based sensitive results, and verify HTGS model to be effective in different working conditions by experimental data. Third, the distribution characteristics of energy losses are investigated with the increasing guide vane, and the corresponding stability regions are presented to predict the characteristics of transient stability trend. The obtained results could contribute to the optimization analysis and control of HTGS in working conditions that is far away the optimum operating condition.

Suggested Citation

  • Xu, Beibei & Jun, Hong-Bae & Chen, Diyi & Li, Huanhuan & Zhang, Jingjing & Cavalcante Blanco, Claudio Jose & Shen, Haijun, 2019. "Stability analysis of a hydro-turbine governing system considering inner energy losses," Renewable Energy, Elsevier, vol. 134(C), pages 258-266.
  • Handle: RePEc:eee:renene:v:134:y:2019:i:c:p:258-266
    DOI: 10.1016/j.renene.2018.11.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118313454
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.11.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hu, Yanlong & Huang, Weibin & Wang, Jing & Chen, Shijun & Zhang, Jie, 2016. "Current status, challenges, and perspectives of Sichuan׳s renewable energy development in Southwest China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1373-1385.
    2. Ahn, Soo-Hwang & Xiao, Yexiang & Wang, Zhengwei & Zhou, Xuezhi & Luo, Yongyao, 2017. "Performance prediction of a prototype tidal power turbine by using a suitable numerical model," Renewable Energy, Elsevier, vol. 113(C), pages 293-302.
    3. Li, Chaoshun & Mao, Yifeng & Yang, Jiandong & Wang, Zanbin & Xu, Yanhe, 2017. "A nonlinear generalized predictive control for pumped storage unit," Renewable Energy, Elsevier, vol. 114(PB), pages 945-959.
    4. Riasi, Alireza & Tazraei, Pedram, 2017. "Numerical analysis of the hydraulic transient response in the presence of surge tanks and relief valves," Renewable Energy, Elsevier, vol. 107(C), pages 138-146.
    5. Yang, Weijia & Norrlund, Per & Chung, Chi Yung & Yang, Jiandong & Lundin, Urban, 2018. "Eigen-analysis of hydraulic-mechanical-electrical coupling mechanism for small signal stability of hydropower plant," Renewable Energy, Elsevier, vol. 115(C), pages 1014-1025.
    6. Rezghi, A. & Riasi, A., 2016. "Sensitivity analysis of transient flow of two parallel pump-turbines operating at runaway," Renewable Energy, Elsevier, vol. 86(C), pages 611-622.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhu, Daoyi & Guo, Wencheng, 2019. "Critical sectional area of surge chamber considering nonlinearity of head loss of diversion tunnel and steady output of turbine," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 165-172.
    2. Li, Huanhuan & Xu, Beibei & Arzaghi, Ehsan & Abbassi, Rouzbeh & Chen, Diyi & Aggidis, George A. & Zhang, Jingjing & Patelli, Edoardo, 2020. "Transient safety assessment and risk mitigation of a hydroelectric generation system," Energy, Elsevier, vol. 196(C).
    3. Tavakolpour-Saleh, A.R. & Zare, Shahryar, 2019. "An averaging-based Lyapunov technique to design thermal oscillators: A case study on free piston Stirling engine," Energy, Elsevier, vol. 189(C).
    4. Okulov, V.L. & Naumov, I.V. & Kabardin, I.K. & Litvinov, I.V. & Markovich, D.M. & Mikkelsen, R.F. & Sørensen, J.N. & Alekseenko, S.V. & Wood, D.H., 2021. "Experiments on line arrays of horizontal-axis hydroturbines," Renewable Energy, Elsevier, vol. 163(C), pages 15-21.
    5. Zaher Mundher Yaseen & Ameen Mohammed Salih Ameen & Mohammed Suleman Aldlemy & Mumtaz Ali & Haitham Abdulmohsin Afan & Senlin Zhu & Ahmed Mohammed Sami Al-Janabi & Nadhir Al-Ansari & Tiyasha Tiyasha &, 2020. "State-of-the Art-Powerhouse, Dam Structure, and Turbine Operation and Vibrations," Sustainability, MDPI, vol. 12(4), pages 1-40, February.
    6. Feng, Zhong-kai & Niu, Wen-jing & Cheng, Chun-tian, 2019. "China’s large-scale hydropower system: operation characteristics, modeling challenge and dimensionality reduction possibilities," Renewable Energy, Elsevier, vol. 136(C), pages 805-818.
    7. Priyanka Majumder & Mrinmoy Majumder & Apu Kumar Saha & Soumitra Nath, 2020. "Selection of features for analysis of reliability of performance in hydropower plants: a multi-criteria decision making approach," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(4), pages 3239-3265, April.
    8. Zhao, Ziwen & Yuan, Yichen & He, Mengjiao & Jurasz, Jakub & Wang, Jianan & Egusquiza, Mònica & Egusquiza, Eduard & Xu, Beibei & Chen, Diyi, 2022. "Stability and efficiency performance of pumped hydro energy storage system for higher flexibility," Renewable Energy, Elsevier, vol. 199(C), pages 1482-1494.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rezghi, Ali & Riasi, Alireza & Tazraei, Pedram, 2020. "Multi-objective optimization of hydraulic transient condition in a pump-turbine hydropower considering the wicket-gates closing law and the surge tank position," Renewable Energy, Elsevier, vol. 148(C), pages 478-491.
    2. Fu, Jianing & Yu, Xiangyang & Gao, Chunyang & Cui, Junda & Li, Youting, 2022. "Nonsingular fast terminal control for the DFIG-based variable-speed hydro-unit," Energy, Elsevier, vol. 244(PA).
    3. Lan, Xinyao & Jin, Jiahui & Xu, Beibei & Chen, Diyi & Egusquiza, Mònica & Kim, Jin-Hyuk & Egusquiza, Eduard & Jafar, Nejadali & Xu, Lin & Kuang, Yuan, 2022. "Physical model test and parametric optimization of a hydroelectric generating system with a coaxial shaft surge tank," Renewable Energy, Elsevier, vol. 200(C), pages 880-899.
    4. Li, Huanhuan & Xu, Beibei & Riasi, Alireza & Szulc, Przemyslaw & Chen, Diyi & M'zoughi, Fares & Skjelbred, Hans Ivar & Kong, Jiehong & Tazraei, Pedram, 2019. "Performance evaluation in enabling safety for a hydropower generation system," Renewable Energy, Elsevier, vol. 143(C), pages 1628-1642.
    5. Yixuan Guo & Xiao Liang & Ziyu Niu & Zezhou Cao & Liuwei Lei & Hualin Xiong & Diyi Chen, 2021. "Vibration Characteristics of a Hydroelectric Generating System with Different Hydraulic-Mechanical-Electric Parameters in a Sudden Load Increasing Process," Energies, MDPI, vol. 14(21), pages 1-21, November.
    6. Lei, Liuwei & Li, Feng & Kheav, Kimleng & Jiang, Wei & Luo, Xingqi & Patelli, Edoardo & Xu, Beibei & Chen, Diyi, 2021. "A start-up optimization strategy of a hydroelectric generating system: From a symmetrical structure to asymmetric structure on diversion pipes," Renewable Energy, Elsevier, vol. 180(C), pages 1148-1165.
    7. Xu, Beibei & Zhang, Jingjing & Egusquiza, Mònica & Chen, Diyi & Li, Feng & Behrens, Paul & Egusquiza, Eduard, 2021. "A review of dynamic models and stability analysis for a hydro-turbine governing system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    8. Chen, Jinbao & Liu, Shaohua & Wang, Yunhe & Hu, Wenqing & Zou, Yidong & Zheng, Yang & Xiao, Zhihuai, 2024. "Generalized predictive control application scheme for nonlinear hydro-turbine regulation system: Based on a precise novel control structure," Energy, Elsevier, vol. 296(C).
    9. Yuqiang Tian & Bin Wang & Diyi Chen & Shaokun Wang & Peng Chen & Ying Yang, 2019. "Design of a Nonlinear Predictive Controller for a Fractional-Order Hydraulic Turbine Governing System with Mechanical Time Delay," Energies, MDPI, vol. 12(24), pages 1-16, December.
    10. Xu, Beibei & Chen, Diyi & Patelli, Edoardo & Shen, Haijun & Park, Jae-Hyun, 2019. "Mathematical model and parametric uncertainty analysis of a hydraulic generating system," Renewable Energy, Elsevier, vol. 136(C), pages 1217-1230.
    11. Lei, Liuwei & Li, Feng & Xu, Beibei & Egusquiza, Mònica & Luo, Xingqi & Zhang, Junzhi & Egusquiza, Eduard & Chen, Diyi & Jiang, Wei & Patelli, Edoardo, 2022. "Time-frequency domain characteristics analysis of a hydro-turbine governor system considering vortex rope excitation," Renewable Energy, Elsevier, vol. 183(C), pages 172-187.
    12. Ma, Weichao & Yan, Wenjie & Yang, Jiebin & He, Xianghui & Yang, Jiandong & Yang, Weijia, 2022. "Experimental and numerical investigation on head losses of a complex throttled surge tank for refined hydropower plant simulation," Renewable Energy, Elsevier, vol. 186(C), pages 264-279.
    13. Hu, Jinhong & Yang, Jiebin & He, Xianghui & Zhao, Zhigao & Yang, Jiandong, 2023. "Transient analysis of a hydropower plant with a super-long headrace tunnel during load acceptance: Instability mechanism and measurement verification," Energy, Elsevier, vol. 263(PA).
    14. Chen, Sheng & Wang, Jing & Zhang, Jian & Yu, Xiaodong & He, Wei, 2020. "Transient behavior of two-stage load rejection for multiple units system in pumped storage plants," Renewable Energy, Elsevier, vol. 160(C), pages 1012-1022.
    15. Cao, Jingwei & Luo, Yongyao & Presas, Alexandre & Ahn, Soo-Hwang & Wang, Zhengwei & Huang, Xingxing & Liu, Yan, 2022. "Influence of rotation on the modal characteristics of a bulb turbine unit rotor," Renewable Energy, Elsevier, vol. 187(C), pages 887-895.
    16. Huang, Zhenwei & Huang, Zhenyou & Fan, Honggang, 2020. "Influence of C groove on energy performance and noise source of a NACA0009 hydrofoil with tip clearance," Renewable Energy, Elsevier, vol. 159(C), pages 726-735.
    17. Huang, Yifan & Yang, Weijia & Zhao, Zhigao & Han, Wenfu & Li, Yulan & Yang, Jiandong, 2023. "Dynamic modeling and favorable speed command of variable-speed pumped-storage unit during power regulation," Renewable Energy, Elsevier, vol. 206(C), pages 769-783.
    18. Wei Huang & Jiming Ma & Xinlei Guo & Huokun Li & Jiazhen Li & Gang Wang, 2021. "Stability Criterion for Mass Oscillation in the Surge Tank of a Hydropower Station Considering Velocity Head and Throttle Loss," Energies, MDPI, vol. 14(17), pages 1-19, August.
    19. Zeng, Wei & Yang, Jiandong & Tang, Renbo & Yang, Weijia, 2016. "Extreme water-hammer pressure during one-after-another load shedding in pumped-storage stations," Renewable Energy, Elsevier, vol. 99(C), pages 35-44.
    20. Hongjie Wang & Jianpeng Wang & Ruzhi Gong & Chaoying Shang & Deyou Li & Xianzhu Wei, 2021. "Investigations on Pressure Fluctuations in the S-Shaped Region of a Pump–Turbine," Energies, MDPI, vol. 14(20), pages 1-19, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:134:y:2019:i:c:p:258-266. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.