IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i14p4071-d589276.html
   My bibliography  Save this article

Hydraulic Transients in Viscoelastic Pipeline System with Sudden Cross-Section Changes

Author

Listed:
  • Michał Kubrak

    (Faculty of Building Services, Hydro and Environmental Engineering, Warsaw University of Technology, 00-653 Warsaw, Poland)

  • Agnieszka Malesińska

    (Faculty of Building Services, Hydro and Environmental Engineering, Warsaw University of Technology, 00-653 Warsaw, Poland)

  • Apoloniusz Kodura

    (Faculty of Building Services, Hydro and Environmental Engineering, Warsaw University of Technology, 00-653 Warsaw, Poland)

  • Kamil Urbanowicz

    (Department of Mechanical Engineering and Mechatronics, West Pomeranian University of Technology, 70-310 Szczecin, Poland)

  • Michał Stosiak

    (Department of Hydraulic Machines and Systems, Wroclaw University of Technology, 50-371 Wrocław, Poland)

Abstract

It is well known that the water hammer phenomenon can lead to pipeline system failures. For this reason, there is an increased need for simulation of hydraulic transients. High-density polyethylene (HDPE) pipes are commonly used in various pressurised pipeline systems. Most studies have only focused on water hammer events in a single pipe. However, typical fluid distribution networks are composed of serially connected pipes with various inner diameters. The present paper aims to investigate the influence of sudden cross-section changes in an HDPE pipeline system on pressure oscillations during the water hammer phenomenon. Numerical and experimental studies have been conducted. In order to include the viscoelastic behaviour of the HDPE pipe wall, the generalised Kelvin–Voigt model was introduced into the continuity equation. Transient equations were numerically solved using the explicit MacCormack method. A numerical model that involves assigning two values of flow velocity to the connection node was used. The aim of the conducted experiments was to record pressure changes downstream of the pipeline system during valve-induced water hammer. In order to validate the numerical model, the simulation results were compared with experimental data. A satisfactory compliance between the results of the numerical calculations and laboratory data was obtained.

Suggested Citation

  • Michał Kubrak & Agnieszka Malesińska & Apoloniusz Kodura & Kamil Urbanowicz & Michał Stosiak, 2021. "Hydraulic Transients in Viscoelastic Pipeline System with Sudden Cross-Section Changes," Energies, MDPI, vol. 14(14), pages 1-12, July.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:14:p:4071-:d:589276
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/14/4071/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/14/4071/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wuyi Wan & Boran Zhang & Xiaoyi Chen & Jijian Lian, 2019. "Water Hammer Control Analysis of an Intelligent Surge Tank with Spring Self-Adaptive Auxiliary Control System," Energies, MDPI, vol. 12(13), pages 1-19, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Artur S. Bartosik, 2022. "Numerical Heat Transfer and Fluid Flow: A Review of Contributions to the Special Issue," Energies, MDPI, vol. 15(8), pages 1-8, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yong Wang & Nan Wei & Dejun Wan & Shouxi Wang & Zongming Yuan, 2019. "Numerical Simulation for Preheating New Submarine Hot Oil Pipelines," Energies, MDPI, vol. 12(18), pages 1-26, September.
    2. Mohammad Mahmoudi-Rad & Mohammad Najafzadeh, 2023. "Effects of Surge Tank Geometry on the Water Hammer Phenomenon: Numerical Investigation," Sustainability, MDPI, vol. 15(3), pages 1-19, January.
    3. Michał Kubrak & Agnieszka Malesińska & Apoloniusz Kodura & Kamil Urbanowicz & Paweł Bury & Michał Stosiak, 2021. "Water Hammer Control Using Additional Branched HDPE Pipe," Energies, MDPI, vol. 14(23), pages 1-18, November.
    4. Sanghyun Kim & Dooyong Choi, 2022. "Dimensionless Impedance Method for General Design of Surge Tank in Simple Pipeline Systems," Energies, MDPI, vol. 15(10), pages 1-13, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:14:p:4071-:d:589276. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.