IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i12p2435-d242587.html
   My bibliography  Save this article

Numerical Simulation of Temperature Decrease in Greenhouses with Summer Water-Sprinkling Roof

Author

Listed:
  • Jiaming Guo

    (College of Engineering, South China Agricultural University, Guangzhou 510642, China)

  • Yanhua Liu

    (Engineering Fundamental Teaching and Training Center, South China Agricultural University, Guangzhou 510642, China)

  • Enli Lü

    (College of Engineering, South China Agricultural University, Guangzhou 510642, China)

Abstract

Decreasing the temperature of a greenhouse in summer is very important for the growth of plants. To investigate the effects of a roof sprinkler on the heat environment of a greenhouse, a three-dimensional symmetrical model was built, in which a k - ε (k-epsilon) turbulent model, a DO (Discrete Ordinates) irrational model, a Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) algorithm, and a multiphase model were used to simulate the effects of the roof sprinkler, at different flow rates. Based on the simulation results, it was found that the temperature could be further reduced under a proper sprinkle rate, and the temperature distribution in the film on the roof was more uniform. A test was conducted to verify the accuracy of the model, which proved the validity of the numerical results. The simulation results of this study will be helpful for controlling and optimizing the heat environment of a greenhouse.

Suggested Citation

  • Jiaming Guo & Yanhua Liu & Enli Lü, 2019. "Numerical Simulation of Temperature Decrease in Greenhouses with Summer Water-Sprinkling Roof," Energies, MDPI, vol. 12(12), pages 1-15, June.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:12:p:2435-:d:242587
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/12/2435/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/12/2435/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yongtao Shen & Ruihua Wei & Lihong Xu, 2018. "Energy Consumption Prediction of a Greenhouse and Optimization of Daily Average Temperature," Energies, MDPI, vol. 11(1), pages 1-17, January.
    2. Marucci, Alvaro & Cappuccini, Andrea, 2016. "Dynamic photovoltaic greenhouse: Energy efficiency in clear sky conditions," Applied Energy, Elsevier, vol. 170(C), pages 362-376.
    3. Testa, Jenna & Krarti, Moncef, 2017. "A review of benefits and limitations of static and switchable cool roof systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 451-460.
    4. Chen, Jiaoliao & Xu, Fang & Tan, Dapeng & Shen, Zheng & Zhang, Libin & Ai, Qinglin, 2015. "A control method for agricultural greenhouses heating based on computational fluid dynamics and energy prediction model," Applied Energy, Elsevier, vol. 141(C), pages 106-118.
    5. Amer, Emad H., 2006. "Passive options for solar cooling of buildings in arid areas," Energy, Elsevier, vol. 31(8), pages 1332-1344.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Edwin Villagran & Carlos Bojacá & Mohammad Akrami, 2021. "Contribution to the Sustainability of Agricultural Production in Greenhouses Built on Slope Soils: A Numerical Study of the Microclimatic Behavior of a Typical Colombian Structure," Sustainability, MDPI, vol. 13(9), pages 1-22, April.
    2. Lin, Terry & Goldsworthy, Mark & Chavan, Sachin & Liang, Weiguang & Maier, Chelsea & Ghannoum, Oula & Cazzonelli, Christopher I. & Tissue, David T. & Lan, Yi-Chen & Sethuvenkatraman, Subbu & Lin, Han , 2022. "A novel cover material improves cooling energy and fertigation efficiency for glasshouse eggplant production," Energy, Elsevier, vol. 251(C).
    3. Edwin Villagran & Rommel Leon & Andrea Rodriguez & Jorge Jaramillo, 2020. "3D Numerical Analysis of the Natural Ventilation Behavior in a Colombian Greenhouse Established in Warm Climate Conditions," Sustainability, MDPI, vol. 12(19), pages 1-27, October.
    4. Gloria Alexandra Ortiz Rocha & Maria Angelica Pichimata & Edwin Villagran, 2021. "Research on the Microclimate of Protected Agriculture Structures Using Numerical Simulation Tools: A Technical and Bibliometric Analysis as a Contribution to the Sustainability of Under-Cover Cropping," Sustainability, MDPI, vol. 13(18), pages 1-40, September.
    5. Subin Mattara Chalill & Snehaunshu Chowdhury & Ramanujam Karthikeyan, 2021. "Prediction of Key Crop Growth Parameters in a Commercial Greenhouse Using CFD Simulation and Experimental Verification in a Pilot Study," Agriculture, MDPI, vol. 11(7), pages 1-23, July.
    6. Germán Díaz-Flórez & Jorge Mendiola-Santibañez & Luis Solís-Sánchez & Domingo Gómez-Meléndez & Ivan Terol-Villalobos & Hector Gutiérrez-Bañuelos & Ma. Araiza-Esquivel & Gustavo Espinoza-García & Juan , 2019. "Modeling and Simulation of Temperature and Relative Humidity Inside a Growth Chamber," Energies, MDPI, vol. 12(21), pages 1-22, October.
    7. Di Qi & Chuangyao Zhao & Shixiong Li & Ran Chen & Angui Li, 2021. "Numerical Assessment of Earth to Air Heat Exchanger with Variable Humidity Conditions in Greenhouses," Energies, MDPI, vol. 14(5), pages 1-18, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Achour, Yasmine & Ouammi, Ahmed & Zejli, Driss, 2021. "Technological progresses in modern sustainable greenhouses cultivation as the path towards precision agriculture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    2. Dehwah, Ammar H.A. & Krarti, Moncef, 2021. "Energy performance of integrated adaptive envelope systems for residential buildings," Energy, Elsevier, vol. 233(C).
    3. Alhazmi, Mansour & Sailor, David J. & Levinson, Ronnen, 2023. "A review of challenges, barriers, and opportunities for large-scale deployment of cool surfaces," Energy Policy, Elsevier, vol. 180(C).
    4. La Notte, Luca & Giordano, Lorena & Calabrò, Emanuele & Bedini, Roberto & Colla, Giuseppe & Puglisi, Giovanni & Reale, Andrea, 2020. "Hybrid and organic photovoltaics for greenhouse applications," Applied Energy, Elsevier, vol. 278(C).
    5. Gloria Alexandra Ortiz Rocha & Maria Angelica Pichimata & Edwin Villagran, 2021. "Research on the Microclimate of Protected Agriculture Structures Using Numerical Simulation Tools: A Technical and Bibliometric Analysis as a Contribution to the Sustainability of Under-Cover Cropping," Sustainability, MDPI, vol. 13(18), pages 1-40, September.
    6. Jerónimo Ramos-Teodoro & Adrián Giménez-Miralles & Francisco Rodríguez & Manuel Berenguel, 2020. "A Flexible Tool for Modeling and Optimal Dispatch of Resources in Agri-Energy Hubs," Sustainability, MDPI, vol. 12(21), pages 1-24, October.
    7. Alberto Bocca & Luca Bergamasco & Matteo Fasano & Lorenzo Bottaccioli & Eliodoro Chiavazzo & Alberto Macii & Pietro Asinari, 2018. "Multiple-Regression Method for Fast Estimation of Solar Irradiation and Photovoltaic Energy Potentials over Europe and Africa," Energies, MDPI, vol. 11(12), pages 1-17, December.
    8. Shi, Long, 2018. "Theoretical models for wall solar chimney under cooling and heating modes considering room configuration," Energy, Elsevier, vol. 165(PB), pages 925-938.
    9. Gopalakrishna Gangisetty & Ron Zevenhoven, 2023. "A Review of Nanoparticle Material Coatings in Passive Radiative Cooling Systems Including Skylights," Energies, MDPI, vol. 16(4), pages 1-59, February.
    10. Xiaoxing Weng & Dapeng Tan & Gang Wang & Changqing Chen & Lianyou Zheng & Mingan Yuan & Duojiao Li & Bin Chen & Li Jiang & Xinrong Hu, 2023. "CFD Simulation and Optimization of the Leaf Collecting Mechanism for the Riding-Type Tea Plucking Machine," Agriculture, MDPI, vol. 13(5), pages 1-21, April.
    11. Marucci, Alvaro & Cappuccini, Andrea, 2016. "Dynamic photovoltaic greenhouse: Energy efficiency in clear sky conditions," Applied Energy, Elsevier, vol. 170(C), pages 362-376.
    12. Uk-Hyeon Yeo & Sang-Yeon Lee & Se-Jun Park & Jun-Gyu Kim & Young-Bae Choi & Rack-Woo Kim & Jong Hwa Shin & In-Bok Lee, 2022. "Rooftop Greenhouse: (1) Design and Validation of a BES Model for a Plastic-Covered Greenhouse Considering the Tomato Crop Model and Natural Ventilation Characteristics," Agriculture, MDPI, vol. 12(7), pages 1-25, June.
    13. Artur Nemś & Magdalena Nemś & Klaudia Świder, 2018. "Analysis of the Possibilities of Using a Heat Pump for Greenhouse Heating in Polish Climatic Conditions—A Case Study," Sustainability, MDPI, vol. 10(10), pages 1-23, September.
    14. Adriana Reyes-Lúa & Julian Straus & Vidar T. Skjervold & Goran Durakovic & Tom Ståle Nordtvedt, 2021. "A Novel Concept for Sustainable Food Production Utilizing Low Temperature Industrial Surplus Heat," Sustainability, MDPI, vol. 13(17), pages 1-23, August.
    15. Zavala-Guillén, I. & Xamán, J. & Hernández-Pérez, I. & Hernández-Lopéz, I. & Gijón-Rivera, M. & Chávez, Y., 2018. "Numerical study of the optimum width of 2a diurnal double air-channel solar chimney," Energy, Elsevier, vol. 147(C), pages 403-417.
    16. Shi, Long, 2019. "Impacts of wind on solar chimney performance in a building," Energy, Elsevier, vol. 185(C), pages 55-67.
    17. Rabiu, Anis & Adesanya, Misbaudeen Aderemi & Na, Wook-Ho & Ogunlowo, Qazeem O. & Akpenpuun, Timothy D. & Kim, Hyeon Tae & Lee, Hyun-Woo, 2023. "Thermal performance and energy cost of Korean multispan greenhouse energy-saving screens," Energy, Elsevier, vol. 285(C).
    18. Ioan Aschilean & Gabriel Rasoi & Maria Simona Raboaca & Constantin Filote & Mihai Culcer, 2018. "Design and Concept of an Energy System Based on Renewable Sources for Greenhouse Sustainable Agriculture," Energies, MDPI, vol. 11(5), pages 1-12, May.
    19. Parajuli, Samvid & Narayan Bhattarai, Tek & Gorjian, Shiva & Vithanage, Meththika & Raj Paudel, Shukra, 2023. "Assessment of potential renewable energy alternatives for a typical greenhouse aquaponics in Himalayan Region of Nepal," Applied Energy, Elsevier, vol. 344(C).
    20. Butt, Afaq A. & de Vries, Samuel B. & Loonen, Roel C.G.M. & Hensen, Jan L.M. & Stuiver, Anthonie & van den Ham, Jonathan E.J. & Erich, Bart S.J.F., 2021. "Investigating the energy saving potential of thermochromic coatings on building envelopes," Applied Energy, Elsevier, vol. 291(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:12:p:2435-:d:242587. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.