IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i21p8820-d433833.html
   My bibliography  Save this article

A Flexible Tool for Modeling and Optimal Dispatch of Resources in Agri-Energy Hubs

Author

Listed:
  • Jerónimo Ramos-Teodoro

    (CIESOL-ceiA3, Department of Informatics, University of Almeria, Ctra. Sacramento, s/n, La Cañada de San Urbano, 04120 Almeria, Spain)

  • Adrián Giménez-Miralles

    (CIESOL-ceiA3, Department of Informatics, University of Almeria, Ctra. Sacramento, s/n, La Cañada de San Urbano, 04120 Almeria, Spain)

  • Francisco Rodríguez

    (CIESOL-ceiA3, Department of Informatics, University of Almeria, Ctra. Sacramento, s/n, La Cañada de San Urbano, 04120 Almeria, Spain)

  • Manuel Berenguel

    (CIESOL-ceiA3, Department of Informatics, University of Almeria, Ctra. Sacramento, s/n, La Cañada de San Urbano, 04120 Almeria, Spain)

Abstract

The dispatch of energy and resources in agricultural systems often involves the definition and resolution of optimization problems. This paper presents a novel tool composed of a set of MATLAB ® and Simulink ® files that has been developed to ease such tasks. In contrast to other alternatives, it allows the consideration of multiple kinds of resources in the problem and the relationships between the inputs and outputs of the system; its parametrization can be defined graphically in Simulink ® without requiring third party software, and the entire package is freely available on Github. The package can generate the constraints in MATLAB ® code and can get the optimal dispatch schedule for the deterministic mixed-integer linear problem that represents the defined system. Its main functions and blocks as well as a case study based on a traditional Mediterranean greenhouse and a photovoltaic parking lot located in Almeria (Spain) are included to demonstrate its use and clarify how the problem is formulated. The simulation performed validates the tool as being useful for decision-making (schedule irrigation and CO 2 enrichment, as well as managing storage systems) in these and similar environments. Future implementations are intended to incorporate the interconnection of agents with opposed interests and robust optimization strategies for uncertain scenarios.

Suggested Citation

  • Jerónimo Ramos-Teodoro & Adrián Giménez-Miralles & Francisco Rodríguez & Manuel Berenguel, 2020. "A Flexible Tool for Modeling and Optimal Dispatch of Resources in Agri-Energy Hubs," Sustainability, MDPI, vol. 12(21), pages 1-24, October.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:21:p:8820-:d:433833
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/21/8820/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/21/8820/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chicco, Gianfranco & Mancarella, Pierluigi, 2009. "Distributed multi-generation: A comprehensive view," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(3), pages 535-551, April.
    2. Mancarella, Pierluigi, 2014. "MES (multi-energy systems): An overview of concepts and evaluation models," Energy, Elsevier, vol. 65(C), pages 1-17.
    3. Eric Galvan & Paras Mandal & Shantanu Chakraborty & Tomonobu Senjyu, 2019. "Efficient Energy-Management System Using A Hybrid Transactive-Model Predictive Control Mechanism for Prosumer-Centric Networked Microgrids," Sustainability, MDPI, vol. 11(19), pages 1-24, September.
    4. Grzegorz Nawalany & Paweł Sokołowski, 2020. "Improved Energy Management in an Intermittently Heated Building Using a Large Broiler House in Central Europe as an Example," Energies, MDPI, vol. 13(6), pages 1-12, March.
    5. Alaa Farah & Hamdy Hassan & Alaaeldin M. Abdelshafy & Abdelfatah M. Mohamed, 2020. "Optimal Scheduling of Hybrid Multi-Carrier System Feeding Electrical/Thermal Load Based on Particle Swarm Algorithm," Sustainability, MDPI, vol. 12(11), pages 1-21, June.
    6. Allegrini, Jonas & Orehounig, Kristina & Mavromatidis, Georgios & Ruesch, Florian & Dorer, Viktor & Evins, Ralph, 2015. "A review of modelling approaches and tools for the simulation of district-scale energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1391-1404.
    7. Yongtao Shen & Ruihua Wei & Lihong Xu, 2018. "Energy Consumption Prediction of a Greenhouse and Optimization of Daily Average Temperature," Energies, MDPI, vol. 11(1), pages 1-17, January.
    8. Ramos-Teodoro, Jerónimo & Rodríguez, Francisco & Berenguel, Manuel & Torres, José Luis, 2018. "Heterogeneous resource management in energy hubs with self-consumption: Contributions and application example," Applied Energy, Elsevier, vol. 229(C), pages 537-550.
    9. David Abdul Konneh & Harun Or Rashid Howlader & Ryuto Shigenobu & Tomonobu Senjyu & Shantanu Chakraborty & Narayanan Krishna, 2019. "A Multi-Criteria Decision Maker for Grid-Connected Hybrid Renewable Energy Systems Selection Using Multi-Objective Particle Swarm Optimization," Sustainability, MDPI, vol. 11(4), pages 1-36, February.
    10. Long, Sebastian & Marjanovic, Ognjen & Parisio, Alessandra, 2019. "Generalised control-oriented modelling framework for multi-energy systems," Applied Energy, Elsevier, vol. 235(C), pages 320-331.
    11. Mohammadi, Mohammad & Noorollahi, Younes & Mohammadi-ivatloo, Behnam & Yousefi, Hossein, 2017. "Energy hub: From a model to a concept – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1512-1527.
    12. Ringkjøb, Hans-Kristian & Haugan, Peter M. & Solbrekke, Ida Marie, 2018. "A review of modelling tools for energy and electricity systems with large shares of variable renewables," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 440-459.
    13. Ehsan, Ali & Yang, Qiang, 2018. "Optimal integration and planning of renewable distributed generation in the power distribution networks: A review of analytical techniques," Applied Energy, Elsevier, vol. 210(C), pages 44-59.
    14. Evins, Ralph, 2015. "Multi-level optimization of building design, energy system sizing and operation," Energy, Elsevier, vol. 90(P2), pages 1775-1789.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vítor João Pereira Domingues Martinho, 2021. "Agri-Food Contexts in Mediterranean Regions: Contributions to Better Resources Management," Sustainability, MDPI, vol. 13(12), pages 1-17, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ramos-Teodoro, Jerónimo & Rodríguez, Francisco & Berenguel, Manuel & Torres, José Luis, 2018. "Heterogeneous resource management in energy hubs with self-consumption: Contributions and application example," Applied Energy, Elsevier, vol. 229(C), pages 537-550.
    2. Scheller, Fabian & Bruckner, Thomas, 2019. "Energy system optimization at the municipal level: An analysis of modeling approaches and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 444-461.
    3. Kiani-Moghaddam, Mohammad & Soltani, Mohsen N. & Kalogirou, Soteris A. & Mahian, Omid & Arabkoohsar, Ahmad, 2023. "A review of neighborhood level multi-carrier energy hubs—uncertainty and problem-solving process," Energy, Elsevier, vol. 281(C).
    4. Sayegh, M.A. & Danielewicz, J. & Nannou, T. & Miniewicz, M. & Jadwiszczak, P. & Piekarska, K. & Jouhara, H., 2017. "Trends of European research and development in district heating technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1183-1192.
    5. Waibel, Christoph & Evins, Ralph & Carmeliet, Jan, 2019. "Co-simulation and optimization of building geometry and multi-energy systems: Interdependencies in energy supply, energy demand and solar potentials," Applied Energy, Elsevier, vol. 242(C), pages 1661-1682.
    6. Mittelviefhaus, Moritz & Pareschi, Giacomo & Allan, James & Georges, Gil & Boulouchos, Konstantinos, 2021. "Optimal investment and scheduling of residential multi-energy systems including electric mobility: A cost-effective approach to climate change mitigation," Applied Energy, Elsevier, vol. 301(C).
    7. Bartolini, Andrea & Mazzoni, Stefano & Comodi, Gabriele & Romagnoli, Alessandro, 2021. "Impact of carbon pricing on distributed energy systems planning," Applied Energy, Elsevier, vol. 301(C).
    8. Sachajdak, Andrzej & Lappalainen, Jari & Mikkonen, Hannu, 2019. "Dynamic simulation in development of contemporary energy systems – oxy combustion case study," Energy, Elsevier, vol. 181(C), pages 964-973.
    9. Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2018. "A review of uncertainty characterisation approaches for the optimal design of distributed energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 258-277.
    10. Lasemi, Mohammad Ali & Arabkoohsar, Ahmad & Hajizadeh, Amin & Mohammadi-ivatloo, Behnam, 2022. "A comprehensive review on optimization challenges of smart energy hubs under uncertainty factors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    11. Klemm, Christian & Vennemann, Peter, 2021. "Modeling and optimization of multi-energy systems in mixed-use districts: A review of existing methods and approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    12. Fodstad, Marte & Crespo del Granado, Pedro & Hellemo, Lars & Knudsen, Brage Rugstad & Pisciella, Paolo & Silvast, Antti & Bordin, Chiara & Schmidt, Sarah & Straus, Julian, 2022. "Next frontiers in energy system modelling: A review on challenges and the state of the art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    13. Qiu, Dawei & Dong, Zihang & Zhang, Xi & Wang, Yi & Strbac, Goran, 2022. "Safe reinforcement learning for real-time automatic control in a smart energy-hub," Applied Energy, Elsevier, vol. 309(C).
    14. Gabrielli, Paolo & Gazzani, Matteo & Mazzotti, Marco, 2018. "Electrochemical conversion technologies for optimal design of decentralized multi-energy systems: Modeling framework and technology assessment," Applied Energy, Elsevier, vol. 221(C), pages 557-575.
    15. Charani Shandiz, Saeid & Rismanchi, Behzad & Foliente, Greg, 2021. "Energy master planning for net-zero emission communities: State of the art and research challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    16. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    17. David Drysdale & Brian Vad Mathiesen & Henrik Lund, 2019. "From Carbon Calculators to Energy System Analysis in Cities," Energies, MDPI, vol. 12(12), pages 1-21, June.
    18. Wirtz, Marco, 2023. "nPro: A web-based planning tool for designing district energy systems and thermal networks," Energy, Elsevier, vol. 268(C).
    19. Theresa Liegl & Simon Schramm & Philipp Kuhn & Thomas Hamacher, 2023. "Considering Socio-Technical Parameters in Energy System Models—The Current Status and Next Steps," Energies, MDPI, vol. 16(20), pages 1-19, October.
    20. Maroufmashat, Azadeh & Elkamel, Ali & Fowler, Michael & Sattari, Sourena & Roshandel, Ramin & Hajimiragha, Amir & Walker, Sean & Entchev, Evgueniy, 2015. "Modeling and optimization of a network of energy hubs to improve economic and emission considerations," Energy, Elsevier, vol. 93(P2), pages 2546-2558.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:21:p:8820-:d:433833. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.