IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v278y2020ics030626192031093x.html
   My bibliography  Save this article

Hybrid and organic photovoltaics for greenhouse applications

Author

Listed:
  • La Notte, Luca
  • Giordano, Lorena
  • Calabrò, Emanuele
  • Bedini, Roberto
  • Colla, Giuseppe
  • Puglisi, Giovanni
  • Reale, Andrea

Abstract

Reducing the energy demand and dependency on fossil fuels is crucial for improving the sustainability of greenhouses, which are the most energy intensive systems in the agricultural sector. Renewable technologies represent a key option to meet the greenhouse energy demands. Agrivoltaics has recently emerged as a strategy to combine farming activity and power generation through photovoltaics (PV). However, PV systems retrofitting needs to consider the interactions with the existing greenhouse structure, as well as the energy requirements of the equipment for climate control. The influences of PV shading on agronomic parameters have also to be carefully considered. Firstly, this review examines the response of plants to the light and the fundamental aspects of greenhouse facilities. Then, the state-of-the-art of PV systems applied to greenhouses is thoroughly analysed. Simulation studies and experimental works are examined to highlight the effects of PV technologies and module arrangements on energy production and plant growth. Particular attention is devoted to new PV technologies, i.e. organic, dye-sensitized and perovskite solar cells, because of their semi-transparency and flexibility, allowing the easy integration of PV modules into existing or newly conceived greenhouse structures.

Suggested Citation

  • La Notte, Luca & Giordano, Lorena & Calabrò, Emanuele & Bedini, Roberto & Colla, Giuseppe & Puglisi, Giovanni & Reale, Andrea, 2020. "Hybrid and organic photovoltaics for greenhouse applications," Applied Energy, Elsevier, vol. 278(C).
  • Handle: RePEc:eee:appene:v:278:y:2020:i:c:s030626192031093x
    DOI: 10.1016/j.apenergy.2020.115582
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192031093X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.115582?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Changsheng & Wang, Haiyu & Miao, Hong & Ye, Bin, 2017. "The economic and social performance of integrated photovoltaic and agricultural greenhouses systems: Case study in China," Applied Energy, Elsevier, vol. 190(C), pages 204-212.
    2. Soonil Hong & Hongkyu Kang & Geunjin Kim & Seongyu Lee & Seok Kim & Jong-Hoon Lee & Jinho Lee & Minjin Yi & Junghwan Kim & Hyungcheol Back & Jae-Ryoung Kim & Kwanghee Lee, 2016. "A series connection architecture for large-area organic photovoltaic modules with a 7.5% module efficiency," Nature Communications, Nature, vol. 7(1), pages 1-6, April.
    3. Anifantis, Alexandros Sotirios & Colantoni, Andrea & Pascuzzi, Simone, 2017. "Thermal energy assessment of a small scale photovoltaic, hydrogen and geothermal stand-alone system for greenhouse heating," Renewable Energy, Elsevier, vol. 103(C), pages 115-127.
    4. Marucci, Alvaro & Cappuccini, Andrea, 2016. "Dynamic photovoltaic greenhouse: Energy efficiency in clear sky conditions," Applied Energy, Elsevier, vol. 170(C), pages 362-376.
    5. Nadal, Ana & Llorach-Massana, Pere & Cuerva, Eva & López-Capel, Elisa & Montero, Juan Ignacio & Josa, Alejandro & Rieradevall, Joan & Royapoor, Mohammad, 2017. "Building-integrated rooftop greenhouses: An energy and environmental assessment in the mediterranean context," Applied Energy, Elsevier, vol. 187(C), pages 338-351.
    6. Barbera, Elena & Sforza, Eleonora & Vecchiato, Luca & Bertucco, Alberto, 2017. "Energy and economic analysis of microalgae cultivation in a photovoltaic-assisted greenhouse: Scenedesmus obliquus as a case study," Energy, Elsevier, vol. 140(P1), pages 116-124.
    7. Mingzhen Liu & Michael B. Johnston & Henry J. Snaith, 2013. "Efficient planar heterojunction perovskite solar cells by vapour deposition," Nature, Nature, vol. 501(7467), pages 395-398, September.
    8. Filippo Sgroi & Salvatore Tudisca & Anna Maria Di Trapani & Riccardo Testa & Riccardo Squatrito, 2014. "Efficacy and Efficiency of Italian Energy Policy: The Case of PV Systems in Greenhouse Farms," Energies, MDPI, vol. 7(6), pages 1-17, June.
    9. Trypanagnostopoulos, G. & Kavga, A. & Souliotis, Μ. & Tripanagnostopoulos, Y., 2017. "Greenhouse performance results for roof installed photovoltaics," Renewable Energy, Elsevier, vol. 111(C), pages 724-731.
    10. Yano, Akira & Cossu, Marco, 2019. "Energy sustainable greenhouse crop cultivation using photovoltaic technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 116-137.
    11. Barbera, Elena & Sforza, Eleonora & Guidobaldi, Andrea & Di Carlo, Aldo & Bertucco, Alberto, 2017. "Integration of dye-sensitized solar cells (DSC) on photobioreactors for improved photoconversion efficiency in microalgal cultivation," Renewable Energy, Elsevier, vol. 109(C), pages 13-21.
    12. Cossu, Marco & Cossu, Andrea & Deligios, Paola A. & Ledda, Luigi & Li, Zhi & Fatnassi, Hicham & Poncet, Christine & Yano, Akira, 2018. "Assessment and comparison of the solar radiation distribution inside the main commercial photovoltaic greenhouse types in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 822-834.
    13. Selvaraj, Prabhakaran & Ghosh, Aritra & Mallick, Tapas K. & Sundaram, Senthilarasu, 2019. "Investigation of semi-transparent dye-sensitized solar cells for fenestration integration," Renewable Energy, Elsevier, vol. 141(C), pages 516-525.
    14. Cossu, Marco & Yano, Akira & Li, Zhi & Onoe, Mahiro & Nakamura, Hidetoshi & Matsumoto, Toshinori & Nakata, Josuke, 2016. "Advances on the semi-transparent modules based on micro solar cells: First integration in a greenhouse system," Applied Energy, Elsevier, vol. 162(C), pages 1042-1051.
    15. Jonathan A. Foley & Navin Ramankutty & Kate A. Brauman & Emily S. Cassidy & James S. Gerber & Matt Johnston & Nathaniel D. Mueller & Christine O’Connell & Deepak K. Ray & Paul C. West & Christian Balz, 2011. "Solutions for a cultivated planet," Nature, Nature, vol. 478(7369), pages 337-342, October.
    16. Zhi Li & Akira Yano & Marco Cossu & Hidekazu Yoshioka & Ichiro Kita & Yasuomi Ibaraki, 2018. "Electrical Energy Producing Greenhouse Shading System with a Semi-Transparent Photovoltaic Blind Based on Micro-Spherical Solar Cells," Energies, MDPI, vol. 11(7), pages 1-23, June.
    17. Hassanien, Reda Hassanien Emam & Li, Ming & Dong Lin, Wei, 2016. "Advanced applications of solar energy in agricultural greenhouses," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 989-1001.
    18. Vadiee, Amir & Martin, Viktoria, 2013. "Energy analysis and thermoeconomic assessment of the closed greenhouse – The largest commercial solar building," Applied Energy, Elsevier, vol. 102(C), pages 1256-1266.
    19. Bambara, James & Athienitis, Andreas K., 2019. "Energy and economic analysis for the design of greenhouses with semi-transparent photovoltaic cladding," Renewable Energy, Elsevier, vol. 131(C), pages 1274-1287.
    20. Cossu, Marco & Murgia, Lelia & Ledda, Luigi & Deligios, Paola A. & Sirigu, Antonella & Chessa, Francesco & Pazzona, Antonio, 2014. "Solar radiation distribution inside a greenhouse with south-oriented photovoltaic roofs and effects on crop productivity," Applied Energy, Elsevier, vol. 133(C), pages 89-100.
    21. Dupraz, C. & Marrou, H. & Talbot, G. & Dufour, L. & Nogier, A. & Ferard, Y., 2011. "Combining solar photovoltaic panels and food crops for optimising land use: Towards new agrivoltaic schemes," Renewable Energy, Elsevier, vol. 36(10), pages 2725-2732.
    22. Roslan, N. & Ya'acob, M.E. & Radzi, M.A.M. & Hashimoto, Y. & Jamaludin, D. & Chen, G., 2018. "Dye Sensitized Solar Cell (DSSC) greenhouse shading: New insights for solar radiation manipulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 92(C), pages 171-186.
    23. Lee, Hyo Mun & Yoon, Jong Ho, 2018. "Power performance analysis of a transparent DSSC BIPV window based on 2 year measurement data in a full-scale mock-up," Applied Energy, Elsevier, vol. 225(C), pages 1013-1021.
    24. Hassanien, Reda Hassanien Emam & Li, Ming & Yin, Fang, 2018. "The integration of semi-transparent photovoltaics on greenhouse roof for energy and plant production," Renewable Energy, Elsevier, vol. 121(C), pages 377-388.
    25. Marucci, Alvaro & Cappuccini, Andrea, 2016. "Dynamic photovoltaic greenhouse: Energy balance in completely clear sky condition during the hot period," Energy, Elsevier, vol. 102(C), pages 302-312.
    26. Andrea Colantoni & Danilo Monarca & Alvaro Marucci & Massimo Cecchini & Ilaria Zambon & Federico Di Battista & Diego Maccario & Maria Grazia Saporito & Margherita Beruto, 2018. "Solar Radiation Distribution inside a Greenhouse Prototypal with Photovoltaic Mobile Plant and Effects on Flower Growth," Sustainability, MDPI, vol. 10(3), pages 1-17, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jessica Barichello & Luigi Vesce & Paolo Mariani & Enrico Leonardi & Roberto Braglia & Aldo Di Carlo & Antonella Canini & Andrea Reale, 2021. "Stable Semi-Transparent Dye-Sensitized Solar Modules and Panels for Greenhouse Application," Energies, MDPI, vol. 14(19), pages 1-16, October.
    2. Muhammad Azhar Ansari & Giovanni Ciampi & Sergio Sibilio, 2023. "Tackling Efficiency Challenges and Exploring Greenhouse-Integrated Organic Photovoltaics," Energies, MDPI, vol. 16(16), pages 1-24, August.
    3. Moreno, Álex & Chemisana, Daniel & Lamnatou, Chrysovalantou & Maestro, Santiago, 2023. "Energy and photosynthetic performance investigation of a semitransparent photovoltaic rooftop greenhouse for building integration," Renewable Energy, Elsevier, vol. 215(C).
    4. Shalom, Ben Aviad & Mittelman, Gur & Kribus, Abraham & Vitoshkin, Helena, 2023. "Optical and electrical performance of an agrivoltaic field with spectral beam splitting," Renewable Energy, Elsevier, vol. 219(P1).
    5. Gang Wu & Hui Fang & Yi Zhang & Kun Li & Dan Xu, 2023. "Photothermal and Photovoltaic Utilization for Improving the Thermal Environment of Chinese Solar Greenhouses: A Review," Energies, MDPI, vol. 16(19), pages 1-29, September.
    6. Gorjian, Shiva & Bousi, Erion & Özdemir, Özal Emre & Trommsdorff, Max & Kumar, Nallapaneni Manoj & Anand, Abhishek & Kant, Karunesh & Chopra, Shauhrat S., 2022. "Progress and challenges of crop production and electricity generation in agrivoltaic systems using semi-transparent photovoltaic technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    7. Yuan, Yu & Ji, Yaning & Wang, Wei & Shi, Dawei & Hai, Long & Ma, Qianlei & Yang, Qichang & Xie, Yuming & Li, Bin & Wu, Gang & Ma, Lingling, 2023. "Balancing energy harvesting and crop production in a nanofluid spectral splitting covering for an active solar greenhouse," Energy, Elsevier, vol. 278(C).
    8. Nuria Novas & Rosa María Garcia & Jose Manuel Camacho & Alfredo Alcayde, 2021. "Advances in Solar Energy towards Efficient and Sustainable Energy," Sustainability, MDPI, vol. 13(11), pages 1-31, June.
    9. Atiq Ur Rahman & Aliah El Astal-Quirós & Gianpaolo Susanna & Hamed Javanbakht & Emanuele Calabrò & Giuseppina Polino & Barbara Paci & Amanda Generosi & Flavia Righi Riva & Francesca Brunetti & Andrea , 2024. "Scaling-Up of Solution-Processable Tungsten Trioxide (WO 3 ) Nanoparticles as a Hole Transport Layer in Inverted Organic Photovoltaics," Energies, MDPI, vol. 17(4), pages 1-22, February.
    10. Zhang, Menghang & Yan, Tingxiang & Wang, Wei & Jia, Xuexiu & Wang, Jin & Klemeš, Jiří Jaromír, 2022. "Energy-saving design and control strategy towards modern sustainable greenhouse: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    11. Magadley, Esther & Kabha, Ragheb & Dakka, Mohamad & Teitel, Meir & Friman-Peretz, Maayan & Kacira, Murat & Waller, Rebekah & Yehia, Ibrahim, 2022. "Organic photovoltaic modules integrated inside and outside a polytunnel roof," Renewable Energy, Elsevier, vol. 182(C), pages 163-171.
    12. Gorjian, Shiva & Jalili Jamshidian, Farid & Gorjian, Alireza & Faridi, Hamideh & Vafaei, Mohammad & Zhang, Fangxin & Liu, Wen & Elia Campana, Pietro, 2023. "Technological advancements and research prospects of innovative concentrating agrivoltaics," Applied Energy, Elsevier, vol. 337(C).
    13. Lamnatou, Chr. & Cristofari, C. & Chemisana, D., 2024. "Renewable energy sources as a catalyst for energy transition: Technological innovations and an example of the energy transition in France," Renewable Energy, Elsevier, vol. 221(C).
    14. Toledo, Carlos & Ramos-Escudero, Adela & Serrano-Luján, Lucía & Urbina, Antonio, 2024. "Photovoltaic technology as a tool for ecosystem recovery: A case study for the Mar Menor coastal lagoon," Applied Energy, Elsevier, vol. 356(C).
    15. Fernández, Eduardo F. & Villar-Fernández, Antonio & Montes-Romero, Jesús & Ruiz-Torres, Laura & Rodrigo, Pedro M. & Manzaneda, Antonio J. & Almonacid, Florencia, 2022. "Global energy assessment of the potential of photovoltaics for greenhouse farming," Applied Energy, Elsevier, vol. 309(C).
    16. Nguyen, Huu Cuong & Thi, Bich Thuy Vo & Ngo, Quang Hieu, 2022. "Automatic Monitoring System for Hydroponic Farming: IOT-Based Design and Development," Asian Journal of Agriculture and Rural Development, Asian Economic and Social Society (AESS), vol. 12(03), January.
    17. Chang, Ling-Yu & Chang, Ching-Cheng & Rinawati, Mia & Chang, Yu-Hsin & Cheng, Yao-Sheng & Ho, Kuo-Chuan & Chen, Chia-Chin & Lin, Chia-Her & Wang, Chia-Hsin & Yeh, Min-Hsin, 2024. "Near-infrared photoelectrochromic device with graphene quantum dot modified WO3 thin film toward fast-response thermal management for self-powered Agrivoltaics," Applied Energy, Elsevier, vol. 361(C).
    18. Chiara Bersani & Carmelina Ruggiero & Roberto Sacile & Abdellatif Soussi & Enrico Zero, 2022. "Internet of Things Approaches for Monitoring and Control of Smart Greenhouses in Industry 4.0," Energies, MDPI, vol. 15(10), pages 1-30, May.
    19. Giovanni Landi & Sergio Pagano & Heinz Christoph Neitzert & Costantino Mauro & Carlo Barone, 2023. "Noise Spectroscopy: A Tool to Understand the Physics of Solar Cells," Energies, MDPI, vol. 16(3), pages 1-37, January.
    20. Ma, Qianlei & Zhang, Yi & Wu, Gang & Yang, Qichang & Wang, Wei & Chen, Xinge & Ji, Yaning, 2023. "Study on the effect of anti-reflection film on the spectral performance of the spectral splitting covering applied to greenhouse," Energy, Elsevier, vol. 272(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yano, Akira & Cossu, Marco, 2019. "Energy sustainable greenhouse crop cultivation using photovoltaic technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 116-137.
    2. Carlos Toledo & Alessandra Scognamiglio, 2021. "Agrivoltaic Systems Design and Assessment: A Critical Review, and a Descriptive Model towards a Sustainable Landscape Vision (Three-Dimensional Agrivoltaic Patterns)," Sustainability, MDPI, vol. 13(12), pages 1-38, June.
    3. Cossu, Marco & Cossu, Andrea & Deligios, Paola A. & Ledda, Luigi & Li, Zhi & Fatnassi, Hicham & Poncet, Christine & Yano, Akira, 2018. "Assessment and comparison of the solar radiation distribution inside the main commercial photovoltaic greenhouse types in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 822-834.
    4. Li, Zhi & Yano, Akira & Yoshioka, Hidekazu, 2020. "Feasibility study of a blind-type photovoltaic roof-shade system designed for simultaneous production of crops and electricity in a greenhouse," Applied Energy, Elsevier, vol. 279(C).
    5. Zhi Li & Akira Yano & Marco Cossu & Hidekazu Yoshioka & Ichiro Kita & Yasuomi Ibaraki, 2018. "Electrical Energy Producing Greenhouse Shading System with a Semi-Transparent Photovoltaic Blind Based on Micro-Spherical Solar Cells," Energies, MDPI, vol. 11(7), pages 1-23, June.
    6. Achour, Yasmine & Ouammi, Ahmed & Zejli, Driss, 2021. "Technological progresses in modern sustainable greenhouses cultivation as the path towards precision agriculture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    7. Hassanien, Reda Hassanien Emam & Li, Ming & Yin, Fang, 2018. "The integration of semi-transparent photovoltaics on greenhouse roof for energy and plant production," Renewable Energy, Elsevier, vol. 121(C), pages 377-388.
    8. Gorjian, Shiva & Bousi, Erion & Özdemir, Özal Emre & Trommsdorff, Max & Kumar, Nallapaneni Manoj & Anand, Abhishek & Kant, Karunesh & Chopra, Shauhrat S., 2022. "Progress and challenges of crop production and electricity generation in agrivoltaic systems using semi-transparent photovoltaic technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    9. Simona Moretti & Alvaro Marucci, 2019. "A Photovoltaic Greenhouse with Variable Shading for the Optimization of Agricultural and Energy Production," Energies, MDPI, vol. 12(13), pages 1-15, July.
    10. Raúl Aroca-Delgado & José Pérez-Alonso & Ángel Jesús Callejón-Ferre & Borja Velázquez-Martí, 2018. "Compatibility between Crops and Solar Panels: An Overview from Shading Systems," Sustainability, MDPI, vol. 10(3), pages 1-19, March.
    11. El Kolaly, Wael & Ma, Wenhui & Li, Ming & Darwesh, Mohammed, 2020. "The investigation of energy production and mushroom yield in greenhouse production based on mono photovoltaic cells effect," Renewable Energy, Elsevier, vol. 159(C), pages 506-518.
    12. Jing, Rui & He, Yang & He, Jijiang & Liu, Yang & Yang, Shoubing, 2022. "Global sensitivity based prioritizing the parametric uncertainties in economic analysis when co-locating photovoltaic with agriculture and aquaculture in China," Renewable Energy, Elsevier, vol. 194(C), pages 1048-1059.
    13. Javier Padilla & Carlos Toledo & Rodolfo López-Vicente & Raquel Montoya & José-Ramón Navarro & José Abad & Antonio Urbina, 2021. "Passive Heating and Cooling of Photovoltaic Greenhouses Including Thermochromic Materials," Energies, MDPI, vol. 14(2), pages 1-22, January.
    14. Mohd Ashraf Zainol Abidin & Muhammad Nasiruddin Mahyuddin & Muhammad Ammirrul Atiqi Mohd Zainuri, 2021. "Solar Photovoltaic Architecture and Agronomic Management in Agrivoltaic System: A Review," Sustainability, MDPI, vol. 13(14), pages 1-27, July.
    15. Marco Hernandez Velasco, 2021. "Enabling Year-round Cultivation in the Nordics-Agrivoltaics and Adaptive LED Lighting Control of Daily Light Integral," Agriculture, MDPI, vol. 11(12), pages 1-31, December.
    16. Zhang, Menghang & Yan, Tingxiang & Wang, Wei & Jia, Xuexiu & Wang, Jin & Klemeš, Jiří Jaromír, 2022. "Energy-saving design and control strategy towards modern sustainable greenhouse: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    17. Jin, Yang & Jiang, Wei & Han, Yang & Nan, Songyu & Liu, Gongliang & Guo, Wei & Zhang, Kuan & Li, Qing & Li, Dong, 2024. "Comprehensive optimization of shading and electrical performance of roof-mounted photovoltaic system of Venlo-type greenhouse in the severe cold region," Energy, Elsevier, vol. 296(C).
    18. Ghaffarpour, Zahra & Fakhroleslam, Mohammad & Amidpour, Majid, 2024. "Calculation of energy consumption, tomato yield, and electricity generation in a PV-integrated greenhouse with different solar panels configuration," Renewable Energy, Elsevier, vol. 229(C).
    19. Gao, Yuan & Dong, Jianfei & Isabella, Olindo & Santbergen, Rudi & Tan, Hairen & Zeman, Miro & Zhang, Guoqi, 2019. "Modeling and analyses of energy performances of photovoltaic greenhouses with sun-tracking functionality," Applied Energy, Elsevier, vol. 233, pages 424-442.
    20. Amaducci, Stefano & Yin, Xinyou & Colauzzi, Michele, 2018. "Agrivoltaic systems to optimise land use for electric energy production," Applied Energy, Elsevier, vol. 220(C), pages 545-561.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:278:y:2020:i:c:s030626192031093x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.