IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v77y2017icp451-460.html
   My bibliography  Save this article

A review of benefits and limitations of static and switchable cool roof systems

Author

Listed:
  • Testa, Jenna
  • Krarti, Moncef

Abstract

In recent years there has been a widespread adoption of high reflectance (cool) roofing materials in hot climates to reduce a building's cooling load and energy use. While a cool roof can reduce the building's cooling load during warm months, it may regrettably increase the heating load in cool months thus reducing their overall effectiveness. One potential solution to preserving high cooling load savings without accruing a large heating load penalty is to implement a switchable roof reflectance technology; allowing a low reflectance roof during the heating season and a high reflectance roof during the cooling season. This paper organizes and summarizes the literature on cool roofs and switchable roofing materials as a tool for energy savings in buildings. It presents a review of material properties and advancements, energy savings and penalties, current codes, additional benefits and limitations, and recommendations for future research. Finally, the paper summarizes comparative analysis results of the energy performance for both static and switchable cool roofs.

Suggested Citation

  • Testa, Jenna & Krarti, Moncef, 2017. "A review of benefits and limitations of static and switchable cool roof systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 451-460.
  • Handle: RePEc:eee:rensus:v:77:y:2017:i:c:p:451-460
    DOI: 10.1016/j.rser.2017.04.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032117305373
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2017.04.030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gao, Yafeng & Xu, Jiangmin & Yang, Shichao & Tang, Xiaomin & Zhou, Quan & Ge, Jing & Xu, Tengfang & Levinson, Ronnen, 2014. "Cool roofs in China: Policy review, building simulations, and proof-of-concept experiments," Energy Policy, Elsevier, vol. 74(C), pages 190-214.
    2. Akbari, H & Konopacki, S & Pomerantz, M, 1999. "Cooling energy savings potential of reflective roofs for residential and commercial buildings in the United States," Energy, Elsevier, vol. 24(5), pages 391-407.
    3. Roman, Kibria K. & O'Brien, Timothy & Alvey, Jedediah B. & Woo, OhJin, 2016. "Simulating the effects of cool roof and PCM (phase change materials) based roof to mitigate UHI (urban heat island) in prominent US cities," Energy, Elsevier, vol. 96(C), pages 103-117.
    4. Kamalisarvestani, M. & Saidur, R. & Mekhilef, S. & Javadi, F.S., 2013. "Performance, materials and coating technologies of thermochromic thin films on smart windows," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 353-364.
    5. Akbari, H. & Konopacki, S., 2005. "Calculating energy-saving potentials of heat-island reduction strategies," Energy Policy, Elsevier, vol. 33(6), pages 721-756, April.
    6. Akbari, H, 2003. "Measured energy savings from the application of reflective roofs in two small non-residential buildings," Energy, Elsevier, vol. 28(9), pages 953-967.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gopalakrishna Gangisetty & Ron Zevenhoven, 2023. "A Review of Nanoparticle Material Coatings in Passive Radiative Cooling Systems Including Skylights," Energies, MDPI, vol. 16(4), pages 1-59, February.
    2. Dehwah, Ammar H.A. & Krarti, Moncef, 2021. "Performance of precooling strategies using switchable insulation systems for commercial buildings," Applied Energy, Elsevier, vol. 303(C).
    3. Jiaming Guo & Yanhua Liu & Enli Lü, 2019. "Numerical Simulation of Temperature Decrease in Greenhouses with Summer Water-Sprinkling Roof," Energies, MDPI, vol. 12(12), pages 1-15, June.
    4. Eva Crespo Sánchez & David Masip Vilà, 2022. "Thermochromic Materials as Passive Roof Technology: Their Impact on Building Energy Performance," Energies, MDPI, vol. 15(6), pages 1-25, March.
    5. Dehwah, Ammar H.A. & Krarti, Moncef, 2021. "Energy performance of integrated adaptive envelope systems for residential buildings," Energy, Elsevier, vol. 233(C).
    6. Alhazmi, Mansour & Sailor, David J. & Levinson, Ronnen, 2023. "A review of challenges, barriers, and opportunities for large-scale deployment of cool surfaces," Energy Policy, Elsevier, vol. 180(C).
    7. Yating Zhang & Bilal M. Ayyub, 2020. "Projecting heat waves temporally and spatially for local adaptations in a changing climate: Washington D.C. as a case study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(1), pages 731-750, August.
    8. Francesco Baldi & Enrico Genova & Alessandra Gugliandolo & Maria-Anna Segreto, 2022. "Mapping the Potential of High-Reflective Roof Coverings in Residential Buildings in Italy," Sustainability, MDPI, vol. 14(9), pages 1-22, April.
    9. Farooq, Abdul Samad & Zhang, Peng & Gao, Yongfeng & Gulfam, Raza, 2021. "Emerging radiative materials and prospective applications of radiative sky cooling - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    10. Butt, Afaq A. & de Vries, Samuel B. & Loonen, Roel C.G.M. & Hensen, Jan L.M. & Stuiver, Anthonie & van den Ham, Jonathan E.J. & Erich, Bart S.J.F., 2021. "Investigating the energy saving potential of thermochromic coatings on building envelopes," Applied Energy, Elsevier, vol. 291(C).
    11. Chen, Jianheng & Lu, Lin & Gong, Quan, 2023. "Techno-economic and environmental evaluation on radiative sky cooling-based novel passive envelope strategies to achieve building sustainability and carbon neutrality," Applied Energy, Elsevier, vol. 349(C).
    12. Chi, Fang'ai & Liu, Yang & Yan, Jianxiong, 2021. "Integration of Radiative-based air temperature regulating system into residential building for energy saving," Applied Energy, Elsevier, vol. 301(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hirano, Y. & Fujita, T., 2012. "Evaluation of the impact of the urban heat island on residential and commercial energy consumption in Tokyo," Energy, Elsevier, vol. 37(1), pages 371-383.
    2. Butt, Afaq A. & de Vries, Samuel B. & Loonen, Roel C.G.M. & Hensen, Jan L.M. & Stuiver, Anthonie & van den Ham, Jonathan E.J. & Erich, Bart S.J.F., 2021. "Investigating the energy saving potential of thermochromic coatings on building envelopes," Applied Energy, Elsevier, vol. 291(C).
    3. Yang, Jiachuan & Wang, Zhi-Hua & Kaloush, Kamil E., 2015. "Environmental impacts of reflective materials: Is high albedo a ‘silver bullet’ for mitigating urban heat island?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 830-843.
    4. Alberto Speroni & Andrea Giovanni Mainini & Andrea Zani & Riccardo Paolini & Tommaso Pagnacco & Tiziana Poli, 2022. "Experimental Assessment of the Reflection of Solar Radiation from Façades of Tall Buildings to the Pedestrian Level," Sustainability, MDPI, vol. 14(10), pages 1-29, May.
    5. Tsang, S.W. & Jim, C.Y., 2011. "Theoretical evaluation of thermal and energy performance of tropical green roofs," Energy, Elsevier, vol. 36(5), pages 3590-3598.
    6. Xu, Ling & Wang, Jiayu & Xiao, Feipeng & EI-Badawy, Sherif & Awed, Ahmed, 2021. "Potential strategies to mitigate the heat island impacts of highway pavement on megacities with considerations of energy uses," Applied Energy, Elsevier, vol. 281(C).
    7. Gao, Yafeng & Xu, Jiangmin & Yang, Shichao & Tang, Xiaomin & Zhou, Quan & Ge, Jing & Xu, Tengfang & Levinson, Ronnen, 2014. "Cool roofs in China: Policy review, building simulations, and proof-of-concept experiments," Energy Policy, Elsevier, vol. 74(C), pages 190-214.
    8. Qin, Yinghong, 2015. "A review on the development of cool pavements to mitigate urban heat island effect," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 445-459.
    9. Doug, Banting & Hitesh, Doshi & James, Li & Paul, Missios, 2005. "Report on the Environmental Benefits and Costs of Green Roof Technology for the City of Toronto," MPRA Paper 70526, University Library of Munich, Germany.
    10. Hideki Takebayashi, 2016. "High-Reflectance Technology on Building Façades: Installation Guidelines for Pedestrian Comfort," Sustainability, MDPI, vol. 8(8), pages 1-9, August.
    11. Qin, Yinghong & Zhang, Mingyi & Hiller, Jacob E., 2017. "Theoretical and experimental studies on the daily accumulative heat gain from cool roofs," Energy, Elsevier, vol. 129(C), pages 138-147.
    12. Friedman, Chanoch & Becker, Nir & Erell, Evyatar, 2014. "Energy retrofit of residential building envelopes in Israel: A cost-benefit analysis," Energy, Elsevier, vol. 77(C), pages 183-193.
    13. Sofia Pastori & Riccardo Mereu & Enrico Sergio Mazzucchelli & Stefano Passoni & Giovanni Dotelli, 2021. "Energy Performance Evaluation of a Ventilated Façade System through CFD Modeling and Comparison with International Standards," Energies, MDPI, vol. 14(1), pages 1-26, January.
    14. Dehwah, Ammar H.A. & Krarti, Moncef, 2021. "Energy performance of integrated adaptive envelope systems for residential buildings," Energy, Elsevier, vol. 233(C).
    15. Alhazmi, Mansour & Sailor, David J. & Levinson, Ronnen, 2023. "A review of challenges, barriers, and opportunities for large-scale deployment of cool surfaces," Energy Policy, Elsevier, vol. 180(C).
    16. Saafi, Khawla & Daouas, Naouel, 2019. "Energy and cost efficiency of phase change materials integrated in building envelopes under Tunisia Mediterranean climate," Energy, Elsevier, vol. 187(C).
    17. Kirim Lee & Jihoon Seong & Youkyung Han & Won Hee Lee, 2020. "Evaluation of Applicability of Various Color Space Techniques of UAV Images for Evaluating Cool Roof Performance," Energies, MDPI, vol. 13(16), pages 1-12, August.
    18. Atefeh Tamaskani Esfehankalateh & Jack Ngarambe & Geun Young Yun, 2021. "Influence of Tree Canopy Coverage and Leaf Area Density on Urban Heat Island Mitigation," Sustainability, MDPI, vol. 13(13), pages 1-14, July.
    19. Monika Gandhi & Ashok Kumar & Rajasekar Elangovan & Chandan Swaroop Meena & Kishor S. Kulkarni & Anuj Kumar & Garima Bhanot & Nishant R. Kapoor, 2020. "A Review on Shape-Stabilized Phase Change Materials for Latent Energy Storage in Buildings," Sustainability, MDPI, vol. 12(22), pages 1-17, November.
    20. Yu, Jinghua & Leng, Kangxin & Ye, Hong & Xu, Xinhua & Luo, Yongqiang & Wang, Jinbo & Yang, Xie & Yang, Qingchen & Gang, Wenjie, 2020. "Study on thermal insulation characteristics and optimized design of pipe-embedded ventilation roof with outer-layer shape-stabilized PCM in different climate zones," Renewable Energy, Elsevier, vol. 147(P1), pages 1609-1622.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:77:y:2017:i:c:p:451-460. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.