Forecast Horizon and Solar Variability Influences on the Performances of Multiscale Hybrid Forecast Model
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Khatib, Tamer & Mohamed, Azah & Sopian, K., 2012. "A review of solar energy modeling techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2864-2869.
- Mellit, A. & Kalogirou, S.A. & Hontoria, L. & Shaari, S., 2009. "Artificial intelligence techniques for sizing photovoltaic systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(2), pages 406-419, February.
- André, Maïna & Dabo-Niang, Sophie & Soubdhan, Ted & Ould-Baba, Hanany, 2016. "Predictive spatio-temporal model for spatially sparse global solar radiation data," Energy, Elsevier, vol. 111(C), pages 599-608.
- Emanuele Ogliari & Francesco Grimaccia & Sonia Leva & Marco Mussetta, 2013. "Hybrid Predictive Models for Accurate Forecasting in PV Systems," Energies, MDPI, vol. 6(4), pages 1-12, April.
- Kashyap, Yashwant & Bansal, Ankit & Sao, Anil K., 2015. "Solar radiation forecasting with multiple parameters neural networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 825-835.
- Reikard, Gordon & Haupt, Sue Ellen & Jensen, Tara, 2017. "Forecasting ground-level irradiance over short horizons: Time series, meteorological, and time-varying parameter models," Renewable Energy, Elsevier, vol. 112(C), pages 474-485.
- Dambreville, Romain & Blanc, Philippe & Chanussot, Jocelyn & Boldo, Didier, 2014. "Very short term forecasting of the Global Horizontal Irradiance using a spatio-temporal autoregressive model," Renewable Energy, Elsevier, vol. 72(C), pages 291-300.
- Juan Du & Qilong Min & Penglin Zhang & Jinhui Guo & Jun Yang & Bangsheng Yin, 2018. "Short-Term Solar Irradiance Forecasts Using Sky Images and Radiative Transfer Model," Energies, MDPI, vol. 11(5), pages 1-16, May.
- Monjoly, Stéphanie & André, Maïna & Calif, Rudy & Soubdhan, Ted, 2017. "Hourly forecasting of global solar radiation based on multiscale decomposition methods: A hybrid approach," Energy, Elsevier, vol. 119(C), pages 288-298.
- Reikard, Gordon & Hansen, Clifford, 2019. "Forecasting solar irradiance at short horizons: Frequency and time domain models," Renewable Energy, Elsevier, vol. 135(C), pages 1270-1290.
- Sharma, Vishal & Yang, Dazhi & Walsh, Wilfred & Reindl, Thomas, 2016. "Short term solar irradiance forecasting using a mixed wavelet neural network," Renewable Energy, Elsevier, vol. 90(C), pages 481-492.
- Ioannis Panapakidis & Nikolaos Asimopoulos & Athanasios Dagoumas & Georgios C. Christoforidis, 2017. "An Improved Fuzzy C-Means Algorithm for the Implementation of Demand Side Management Measures," Energies, MDPI, vol. 10(9), pages 1-42, September.
- Diagne, Maimouna & David, Mathieu & Lauret, Philippe & Boland, John & Schmutz, Nicolas, 2013. "Review of solar irradiance forecasting methods and a proposition for small-scale insular grids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 65-76.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Herry Kartika Gandhi & Ispány Márton, 2024. "Multi-step Natural Gas Price Forecasting using Ensemble Empirical Mode Decomposition and Long Short-Term Memory Hybrid Model," International Journal of Energy Economics and Policy, Econjournals, vol. 14(4), pages 590-598, July.
- Alessandro Niccolai & Seyedamir Orooji & Andrea Matteri & Emanuele Ogliari & Sonia Leva, 2022. "Irradiance Nowcasting by Means of Deep-Learning Analysis of Infrared Images," Forecasting, MDPI, vol. 4(1), pages 1-11, March.
- Ahmed, R. & Sreeram, V. & Mishra, Y. & Arif, M.D., 2020. "A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
- Joseph Ndong & Ted Soubdhan, 2022. "Extracting Statistical Properties of Solar and Photovoltaic Power Production for the Scope of Building a Sophisticated Forecasting Framework," Forecasting, MDPI, vol. 5(1), pages 1-21, December.
- Jizhong Xue & Zaohui Kang & Chun Sing Lai & Yu Wang & Fangyuan Xu & Haoliang Yuan, 2023. "Distributed Generation Forecasting Based on Rolling Graph Neural Network (ROLL-GNN)," Energies, MDPI, vol. 16(11), pages 1-18, May.
- Fateh Mehazzem & Maina André & Rudy Calif, 2022. "Efficient Output Photovoltaic Power Prediction Based on MPPT Fuzzy Logic Technique and Solar Spatio-Temporal Forecasting Approach in a Tropical Insular Region," Energies, MDPI, vol. 15(22), pages 1-21, November.
- Ahn, Hyeunguk, 2024. "A framework for developing data-driven correction factors for solar PV systems," Energy, Elsevier, vol. 290(C).
- Monirul Islam Miskat & Protap Sarker & Hemal Chowdhury & Tamal Chowdhury & Md Salman Rahman & Nazia Hossain & Piyal Chowdhury & Sadiq M. Sait, 2023. "Current Scenario of Solar Energy Applications in Bangladesh: Techno-Economic Perspective, Policy Implementation, and Possibility of the Integration of Artificial Intelligence," Energies, MDPI, vol. 16(3), pages 1-27, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Lan, Hai & Yin, He & Hong, Ying-Yi & Wen, Shuli & Yu, David C. & Cheng, Peng, 2018. "Day-ahead spatio-temporal forecasting of solar irradiation along a navigation route," Applied Energy, Elsevier, vol. 211(C), pages 15-27.
- Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
- Si-Ya Wang & Jun Qiu & Fang-Fang Li, 2018. "Hybrid Decomposition-Reconfiguration Models for Long-Term Solar Radiation Prediction Only Using Historical Radiation Records," Energies, MDPI, vol. 11(6), pages 1-17, May.
- Rodrigues, Eugénio & Gomes, Álvaro & Gaspar, Adélio Rodrigues & Henggeler Antunes, Carlos, 2018. "Estimation of renewable energy and built environment-related variables using neural networks – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 959-988.
- Theo, Wai Lip & Lim, Jeng Shiun & Ho, Wai Shin & Hashim, Haslenda & Lee, Chew Tin, 2017. "Review of distributed generation (DG) system planning and optimisation techniques: Comparison of numerical and mathematical modelling methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 531-573.
- Llinet Benavides Cesar & Rodrigo Amaro e Silva & Miguel Ángel Manso Callejo & Calimanut-Ionut Cira, 2022. "Review on Spatio-Temporal Solar Forecasting Methods Driven by In Situ Measurements or Their Combination with Satellite and Numerical Weather Prediction (NWP) Estimates," Energies, MDPI, vol. 15(12), pages 1-23, June.
- Paulescu, Marius & Paulescu, Eugenia, 2019. "Short-term forecasting of solar irradiance," Renewable Energy, Elsevier, vol. 143(C), pages 985-994.
- Bisoi, Ranjeeta & Dash, Deepak Ranjan & Dash, P.K. & Tripathy, Lokanath, 2022. "An efficient robust optimized functional link broad learning system for solar irradiance prediction," Applied Energy, Elsevier, vol. 319(C).
- Fateh Mehazzem & Maina André & Rudy Calif, 2022. "Efficient Output Photovoltaic Power Prediction Based on MPPT Fuzzy Logic Technique and Solar Spatio-Temporal Forecasting Approach in a Tropical Insular Region," Energies, MDPI, vol. 15(22), pages 1-21, November.
- Ahmed, R. & Sreeram, V. & Mishra, Y. & Arif, M.D., 2020. "A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
- Qing, Xiangyun & Niu, Yugang, 2018. "Hourly day-ahead solar irradiance prediction using weather forecasts by LSTM," Energy, Elsevier, vol. 148(C), pages 461-468.
- Xiao, Zenan & Huang, Xiaoqiao & Liu, Jun & Li, Chengli & Tai, Yonghang, 2023. "A novel method based on time series ensemble model for hourly photovoltaic power prediction," Energy, Elsevier, vol. 276(C).
- Marchesoni-Acland, Franco & Alonso-Suárez, Rodrigo, 2020. "Intra-day solar irradiation forecast using RLS filters and satellite images," Renewable Energy, Elsevier, vol. 161(C), pages 1140-1154.
- Lopes, Francis M. & Conceição, Ricardo & Silva, Hugo G. & Salgado, Rui & Collares-Pereira, Manuel, 2021. "Improved ECMWF forecasts of direct normal irradiance: A tool for better operational strategies in concentrating solar power plants," Renewable Energy, Elsevier, vol. 163(C), pages 755-771.
- Gabriel Mendonça de Paiva & Sergio Pires Pimentel & Bernardo Pinheiro Alvarenga & Enes Gonçalves Marra & Marco Mussetta & Sonia Leva, 2020. "Multiple Site Intraday Solar Irradiance Forecasting by Machine Learning Algorithms: MGGP and MLP Neural Networks," Energies, MDPI, vol. 13(11), pages 1-28, June.
- Alonso-Suárez, R. & David, M. & Branco, V. & Lauret, P., 2020. "Intra-day solar probabilistic forecasts including local short-term variability and satellite information," Renewable Energy, Elsevier, vol. 158(C), pages 554-573.
- Gairaa, Kacem & Khellaf, Abdallah & Messlem, Youcef & Chellali, Farouk, 2016. "Estimation of the daily global solar radiation based on Box–Jenkins and ANN models: A combined approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 238-249.
- Ghritlahre, Harish Kumar & Prasad, Radha Krishna, 2018. "Application of ANN technique to predict the performance of solar collector systems - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 84(C), pages 75-88.
- Chao-Rong Chen & Unit Three Kartini, 2017. "k-Nearest Neighbor Neural Network Models for Very Short-Term Global Solar Irradiance Forecasting Based on Meteorological Data," Energies, MDPI, vol. 10(2), pages 1-18, February.
- Su, Huai & Zio, Enrico & Zhang, Jinjun & Xu, Mingjing & Li, Xueyi & Zhang, Zongjie, 2019. "A hybrid hourly natural gas demand forecasting method based on the integration of wavelet transform and enhanced Deep-RNN model," Energy, Elsevier, vol. 178(C), pages 585-597.
More about this item
Keywords
hybrid forecast model; predictive performance; forecast horizon; daily insolation condition; variability characterization;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:12:p:2264-:d:239520. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.