IDEAS home Printed from https://ideas.repec.org/a/gam/jforec/v5y2022i1p1-21d1018537.html
   My bibliography  Save this article

Extracting Statistical Properties of Solar and Photovoltaic Power Production for the Scope of Building a Sophisticated Forecasting Framework

Author

Listed:
  • Joseph Ndong

    (Faculty of Sciences and Techniques, Department of Mathematics and Computer Science, University Cheikh Anta Diop of Dakar, Dakar 10700, Senegal)

  • Ted Soubdhan

    (Laboratoire LARGE, Faculty of Sciences, Department of Physics, University of Antilles, 97157 Pointe-à-Pitre, France)

Abstract

Building a sophisticated forecasting framework for solar and photovoltaic power production in geographic zones with severe meteorological conditions is very challenging. This difficulty is linked to the high variability of the global solar radiation on which the energy production depends. A suitable forecasting framework might take into account this high variability and could be able to adjust/re-adjust model parameters to reduce sensitivity to estimation errors. The framework should also be able to re-adapt the model parameters whenever the atmospheric conditions change drastically or suddenly—this changes according to microscopic variations. This work presents a new methodology to analyze carefully the meaningful features of global solar radiation variability and extract some relevant information about the probabilistic laws which governs its dynamic evolution. The work establishes a framework able to identify the macroscopic variations from the solar irradiance. The different categories of variability correspond to different levels of meteorological conditions and events and can occur in different time intervals. Thereafter, the tool will be able to extract the abrupt changes, corresponding to microscopic variations, inside each level of variability. The methodology is based on a combination of probability and possibility theory. An unsupervised clustering technique based on a Gaussian mixture model is proposed to identify, first, the categories of variability and, using a hidden Markov model, we study the temporal dependency of the process to identify the dynamic evolution of the solar irradiance as different temporal states. Finally, by means of some transformations of probabilities to possibilities, we identify the abrupt changes in the solar radiation. The study is performed in Guadeloupe, where we have a long record of global solar radiation data recorded at 1 Hertz.

Suggested Citation

  • Joseph Ndong & Ted Soubdhan, 2022. "Extracting Statistical Properties of Solar and Photovoltaic Power Production for the Scope of Building a Sophisticated Forecasting Framework," Forecasting, MDPI, vol. 5(1), pages 1-21, December.
  • Handle: RePEc:gam:jforec:v:5:y:2022:i:1:p:1-21:d:1018537
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-9394/5/1/1/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-9394/5/1/1/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. R. H. Shumway & D. S. Stoffer, 1982. "An Approach To Time Series Smoothing And Forecasting Using The Em Algorithm," Journal of Time Series Analysis, Wiley Blackwell, vol. 3(4), pages 253-264, July.
    2. Stéphanie Monjoly & Maina André & Rudy Calif & Ted Soubdhan, 2019. "Forecast Horizon and Solar Variability Influences on the Performances of Multiscale Hybrid Forecast Model," Energies, MDPI, vol. 12(12), pages 1-20, June.
    3. Bouveyron, C. & Girard, S. & Schmid, C., 2007. "High-dimensional data clustering," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 502-519, September.
    4. Voyant, Cyril & Soubdhan, Ted & Lauret, Philippe & David, Mathieu & Muselli, Marc, 2015. "Statistical parameters as a means to a priori assess the accuracy of solar forecasting models," Energy, Elsevier, vol. 90(P1), pages 671-679.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fateh Mehazzem & Maina André & Rudy Calif, 2022. "Efficient Output Photovoltaic Power Prediction Based on MPPT Fuzzy Logic Technique and Solar Spatio-Temporal Forecasting Approach in a Tropical Insular Region," Energies, MDPI, vol. 15(22), pages 1-21, November.
    2. Voyant, Cyril & Motte, Fabrice & Notton, Gilles & Fouilloy, Alexis & Nivet, Marie-Laure & Duchaud, Jean-Laurent, 2018. "Prediction intervals for global solar irradiation forecasting using regression trees methods," Renewable Energy, Elsevier, vol. 126(C), pages 332-340.
    3. Mazzocchi, Mario, 2006. "Time patterns in UK demand for alcohol and tobacco: an application of the EM algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 50(9), pages 2191-2205, May.
    4. Charles Bouveyron & Julien Jacques, 2011. "Model-based clustering of time series in group-specific functional subspaces," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 5(4), pages 281-300, December.
    5. Matteo Barigozzi & Matteo Luciani, 2019. "Quasi Maximum Likelihood Estimation and Inference of Large Approximate Dynamic Factor Models via the EM algorithm," Papers 1910.03821, arXiv.org, revised Sep 2024.
    6. Zirogiannis, Nikolaos & Tripodis, Yorghos, 2013. "A Generalized Dynamic Factor Model for Panel Data: Estimation with a Two-Cycle Conditional Expectation-Maximization Algorithm," Working Paper Series 142752, University of Massachusetts, Amherst, Department of Resource Economics.
    7. Tobias Hartl & Roland Jucknewitz, 2022. "Approximate state space modelling of unobserved fractional components," Econometric Reviews, Taylor & Francis Journals, vol. 41(1), pages 75-98, January.
    8. Ahmed, R. & Sreeram, V. & Mishra, Y. & Arif, M.D., 2020. "A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    9. David de Antonio Liedo, 2014. "Nowcasting Belgium," Working Paper Research 256, National Bank of Belgium.
    10. Proietti, Tommaso, 2008. "Estimation of Common Factors under Cross-Sectional and Temporal Aggregation Constraints: Nowcasting Monthly GDP and its Main Components," MPRA Paper 6860, University Library of Munich, Germany.
    11. Matteo Barigozzi & Marc Hallin, 2023. "Dynamic Factor Models: a Genealogy," Papers 2310.17278, arXiv.org, revised Jan 2024.
    12. Regad, L. & Guyon, F. & Maupetit, J. & Tufféry, P. & Camproux, A.C., 2008. "A Hidden Markov Model applied to the protein 3D structure analysis," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 3198-3207, February.
    13. Cathy Maugis & Gilles Celeux & Marie-Laure Martin-Magniette, 2009. "Variable Selection for Clustering with Gaussian Mixture Models," Biometrics, The International Biometric Society, vol. 65(3), pages 701-709, September.
    14. Alessandro Casa & Andrea Cappozzo & Michael Fop, 2022. "Group-Wise Shrinkage Estimation in Penalized Model-Based Clustering," Journal of Classification, Springer;The Classification Society, vol. 39(3), pages 648-674, November.
    15. Alexander Tsyplakov, 2011. "An introduction to state space modeling (in Russian)," Quantile, Quantile, issue 9, pages 1-24, July.
    16. Ma, Tao & Zhou, Zhou & Antoniou, Constantinos, 2018. "Dynamic factor model for network traffic state forecast," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 281-317.
    17. Grassi, Stefano & Proietti, Tommaso & Frale, Cecilia & Marcellino, Massimiliano & Mazzi, Gianluigi, 2015. "EuroMInd-C: A disaggregate monthly indicator of economic activity for the Euro area and member countries," International Journal of Forecasting, Elsevier, vol. 31(3), pages 712-738.
    18. Necmettin Alpay Koçak, 2020. "The Role of Ecb Speeches in Nowcasting German Gdp," European Financial and Accounting Journal, Prague University of Economics and Business, vol. 2020(2), pages 05-20.
    19. T.P.Koirala, Ph.D., 2013. "Time-Varying Parameters of Inflation Model in Nepal: State Space Modeling," NRB Economic Review, Nepal Rastra Bank, Economic Research Department, vol. 25(2), pages 66-77, October.
    20. Hindrayanto, Irma & Koopman, Siem Jan & de Winter, Jasper, 2016. "Forecasting and nowcasting economic growth in the euro area using factor models," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1284-1305.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jforec:v:5:y:2022:i:1:p:1-21:d:1018537. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.