IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i3p1494-d1055899.html
   My bibliography  Save this article

Current Scenario of Solar Energy Applications in Bangladesh: Techno-Economic Perspective, Policy Implementation, and Possibility of the Integration of Artificial Intelligence

Author

Listed:
  • Monirul Islam Miskat

    (Department of Electrical and Electronic Engineering, Chittagong University of Engineering and Technology, Chattogram 4349, Bangladesh)

  • Protap Sarker

    (Department of Mechanical Engineering, Chittagong University of Engineering and Technology, Chattogram 4349, Bangladesh)

  • Hemal Chowdhury

    (Department of Mechanical Engineering, Chittagong University of Engineering and Technology, Chattogram 4349, Bangladesh)

  • Tamal Chowdhury

    (Department of Electrical and Electronic Engineering, Chittagong University of Engineering and Technology, Chattogram 4349, Bangladesh)

  • Md Salman Rahman

    (School of Mathematical and Statistical Sciences, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA)

  • Nazia Hossain

    (School of Engineering, RMIT University, Melbourne, VIC 3001, Australia)

  • Piyal Chowdhury

    (Department of Computer Science and Engineering, University of Science & Technology Chittagong (USTC), Foy’s Lake, Zakir Hossain Road, Chattogram 4202, Bangladesh)

  • Sadiq M. Sait

    (Computer Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia)

Abstract

Bangladesh is blessed with abundant solar resources. Solar power is considered the most desirable energy source to mitigate the high energy demand of this densely populated country. Although various articles deal with solar energy applications in Bangladesh, no detailed review can be found in the literature. Therefore, in this study, we report on the current scenario of renewable energy in Bangladesh and the most significant potential of solar energy’s contribution among multiple renewable energy resources in mitigating energy demand. One main objective of this analysis was to outline the overall view of solar energy applications in Bangladesh to date, as well as the ongoing development of such projects. The technical and theoretical solar energy potential and the technologies available to harvest solar energy were also investigated. A detailed techno-economic design of solar power applications for the garment industry was also simulated to determine the potential of solar energy for this specific scenario. Additionally, renewable energy policies applied in Bangladesh to date are discussed comprehensively, with an emphasis on various ongoing projects undertaken by the government. Moreover, we elaborate global insight into solar power applications and compare Bangladesh’s current solar power scenario with that of other regions worldwide. Furthermore, the potential of artificial intelligence to accelerate solar energy enhancement is delineated comprehensively. Therefore, in this study, we determined the national scenarios of solar power implementation in Bangladesh and projected the most promising approaches for large-scale solar energy applications using artificial intelligence approaches.

Suggested Citation

  • Monirul Islam Miskat & Protap Sarker & Hemal Chowdhury & Tamal Chowdhury & Md Salman Rahman & Nazia Hossain & Piyal Chowdhury & Sadiq M. Sait, 2023. "Current Scenario of Solar Energy Applications in Bangladesh: Techno-Economic Perspective, Policy Implementation, and Possibility of the Integration of Artificial Intelligence," Energies, MDPI, vol. 16(3), pages 1-27, February.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1494-:d:1055899
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/3/1494/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/3/1494/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Thi Thu Em Vo & Seung-Mo Je & Se-Hoon Jung & Jaehyeon Choi & Jun-Ho Huh & Han-Jong Ko, 2022. "Review of Photovoltaic Power and Aquaculture in Desert," Energies, MDPI, vol. 15(9), pages 1-18, April.
    2. Tiwari, Arvind & Barnwal, P. & Sandhu, G.S. & Sodha, M.S., 2009. "Energy metrics analysis of hybrid - photovoltaic (PV) modules," Applied Energy, Elsevier, vol. 86(12), pages 2615-2625, December.
    3. Borunda, Mónica & Garduno-Ramirez, Raul & Jaramillo, O.A., 2019. "Optimal operation of a parabolic solar collector with twisted-tape insert by multi-objective genetic algorithms," Renewable Energy, Elsevier, vol. 143(C), pages 540-550.
    4. Habib, Mohammad Ahsan & Hasanuzzaman, M. & Hosenuzzaman, M. & Salman, Asif & Mehadi, Md Riyad, 2016. "Energy consumption, energy saving and emission reduction of a garment industrial building in Bangladesh," Energy, Elsevier, vol. 112(C), pages 91-100.
    5. Halder, P.K. & Paul, N. & Joardder, M.U.H. & Sarker, M., 2015. "Energy scarcity and potential of renewable energy in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1636-1649.
    6. Khani, M.S. & Baneshi, M. & Eslami, M., 2019. "Bi-objective optimization of photovoltaic-thermal (PV/T) solar collectors according to various weather conditions using genetic algorithm: A numerical modeling," Energy, Elsevier, vol. 189(C).
    7. He, Zhaoyu & Farooq, Abdul Samad & Guo, Weimin & Zhang, Peng, 2022. "Optimization of the solar space heating system with thermal energy storage using data-driven approach," Renewable Energy, Elsevier, vol. 190(C), pages 764-776.
    8. Stéphanie Monjoly & Maina André & Rudy Calif & Ted Soubdhan, 2019. "Forecast Horizon and Solar Variability Influences on the Performances of Multiscale Hybrid Forecast Model," Energies, MDPI, vol. 12(12), pages 1-20, June.
    9. Chowdhury Akram Hossain & Nusrat Chowdhury & Michela Longo & Wahiba Yaïci, 2019. "System and Cost Analysis of Stand-Alone Solar Home System Applied to a Developing Country," Sustainability, MDPI, vol. 11(5), pages 1-13, March.
    10. Mondal, Md. Alam Hossain & Denich, Manfred, 2010. "Assessment of renewable energy resources potential for electricity generation in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2401-2413, October.
    11. Hemmatabady, Hoofar & Welsch, Bastian & Formhals, Julian & Sass, Ingo, 2022. "AI-based enviro-economic optimization of solar-coupled and standalone geothermal systems for heating and cooling," Applied Energy, Elsevier, vol. 311(C).
    12. Chen, Jiahao & Sun, Bing & Li, Yunfei & Jing, Ruipeng & Zeng, Yuan & Li, Minghao, 2022. "Credible capacity calculation method of distributed generation based on equal power supply reliability criterion," Renewable Energy, Elsevier, vol. 201(P1), pages 534-547.
    13. Muhammad Talut & AbuBakr S. Bahaj & Patrick James, 2022. "Solar Power Potential from Industrial Buildings and Impact on Electricity Supply in Bangladesh," Energies, MDPI, vol. 15(11), pages 1-17, May.
    14. Sward, J.A. & Ault, T.R. & Zhang, K.M., 2022. "Genetic algorithm selection of the weather research and forecasting model physics to support wind and solar energy integration," Energy, Elsevier, vol. 254(PB).
    15. Islam, Saifull & Huda, Ain-Ul, 1999. "Technical note Proper utilization of solar energy in Bangladesh: effect on the environment, food supply and the standard of living," Renewable Energy, Elsevier, vol. 17(2), pages 255-263.
    16. Alam Hossain Mondal, Md. & Kamp, Linda M. & Pachova, Nevelina I., 2010. "Drivers, barriers, and strategies for implementation of renewable energy technologies in rural areas in Bangladesh--An innovation system analysis," Energy Policy, Elsevier, vol. 38(8), pages 4626-4634, August.
    17. Ahmed Aljanad & Nadia M. L. Tan & Vassilios G. Agelidis & Hussain Shareef, 2021. "Neural Network Approach for Global Solar Irradiance Prediction at Extremely Short-Time-Intervals Using Particle Swarm Optimization Algorithm," Energies, MDPI, vol. 14(4), pages 1-20, February.
    18. Yong Wang & Xuan Wen & Bing Gu & Fengkai Gao, 2022. "Power Scheduling Optimization Method of Wind-Hydrogen Integrated Energy System Based on the Improved AUKF Algorithm," Mathematics, MDPI, vol. 10(22), pages 1-16, November.
    19. Leijiao Ge & Yuanliang Li & Yuanliang Li & Jun Yan & Yonghui Sun, 2022. "Smart Distribution Network Situation Awareness for High-Quality Operation and Maintenance: A Brief Review," Energies, MDPI, vol. 15(3), pages 1-24, January.
    20. Wang, Zeyu & Srinivasan, Ravi S., 2017. "A review of artificial intelligence based building energy use prediction: Contrasting the capabilities of single and ensemble prediction models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 796-808.
    21. Leijiao Ge & Tianshuo Du & Changlu Li & Yuanliang Li & Jun Yan & Muhammad Umer Rafiq, 2022. "Virtual Collection for Distributed Photovoltaic Data: Challenges, Methodologies, and Applications," Energies, MDPI, vol. 15(23), pages 1-24, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Priyom Das & S. M. Mezbahul Amin & Molla Shahadat Hossain Lipu & Shabana Urooj & Ratil H. Ashique & Ahmed Al Mansur & Md. Tariqul Islam, 2023. "Assessment of Barriers to Wind Energy Development Using Analytic Hierarchy Process," Sustainability, MDPI, vol. 15(22), pages 1-23, November.
    2. Islam, Md. Rabiul & Aziz, Md. Tareq & Alauddin, Mohammed & Kader, Zarjes & Islam, Md. Rakibul, 2024. "Site suitability assessment for solar power plants in Bangladesh: A GIS-based analytical hierarchy process (AHP) and multi-criteria decision analysis (MCDA) approach," Renewable Energy, Elsevier, vol. 220(C).
    3. Amir Ali Safaei Pirooz & Mohammad J. Sanjari & Young-Jin Kim & Stuart Moore & Richard Turner & Wayne W. Weaver & Dipti Srinivasan & Josep M. Guerrero & Mohammad Shahidehpour, 2023. "Adaptation of High Spatio-Temporal Resolution Weather/Load Forecast in Real-World Distributed Energy-System Operation," Energies, MDPI, vol. 16(8), pages 1-16, April.
    4. S M Mezbahul Amin & Abul Hasnat & Nazia Hossain, 2023. "Designing and Analysing a PV/Battery System via New Resilience Indicators," Sustainability, MDPI, vol. 15(13), pages 1-15, June.
    5. Xiaoyan Peng & Xin Guan & Yanzhao Zeng & Jiali Zhang, 2024. "Artificial Intelligence-Driven Multi-Energy Optimization: Promoting Green Transition of Rural Energy Planning and Sustainable Energy Economy," Sustainability, MDPI, vol. 16(10), pages 1-20, May.
    6. S. M. Mezbahul Amin & Nazia Hossain & Molla Shahadat Hossain Lipu & Shabana Urooj & Asma Akter, 2023. "Development of a PV/Battery Micro-Grid for a Data Center in Bangladesh: Resilience and Sustainability Analysis," Sustainability, MDPI, vol. 15(22), pages 1-22, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weng, Xuemeng & Xuan, Ping & Heidari, Ali Asghar & Cai, Zhennao & Chen, Huiling & Mansour, Romany F. & Ragab, Mahmoud, 2023. "A vertical and horizontal crossover sine cosine algorithm with pattern search for optimal power flow in power systems," Energy, Elsevier, vol. 271(C).
    2. Hasan Mahmud & Joyashree Roy, 2021. "Barriers to Overcome in Accelerating Renewable Energy Penetration in Bangladesh," Sustainability, MDPI, vol. 13(14), pages 1-28, July.
    3. Rasheed Abdulkader & Hayder M. A. Ghanimi & Pankaj Dadheech & Meshal Alharbi & Walid El-Shafai & Mostafa M. Fouda & Moustafa H. Aly & Dhivya Swaminathan & Sudhakar Sengan, 2023. "Soft Computing in Smart Grid with Decentralized Generation and Renewable Energy Storage System Planning," Energies, MDPI, vol. 16(6), pages 1-24, March.
    4. Mondal, Md. Alam Hossain & Boie, Wulf & Denich, Manfred, 2010. "Future demand scenarios of Bangladesh power sector," Energy Policy, Elsevier, vol. 38(11), pages 7416-7426, November.
    5. Alam Hossain Mondal, Md. & Sadrul Islam, A.K.M., 2011. "Potential and viability of grid-connected solar PV system in Bangladesh," Renewable Energy, Elsevier, vol. 36(6), pages 1869-1874.
    6. Islam, Aminul & Chan, Eng-Seng & Taufiq-Yap, Yun Hin & Mondal, Md. Alam Hossain & Moniruzzaman, M. & Mridha, Moniruzzaman, 2014. "Energy security in Bangladesh perspective—An assessment and implication," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 154-171.
    7. S M Mezbahul Amin & Abul Hasnat & Nazia Hossain, 2023. "Designing and Analysing a PV/Battery System via New Resilience Indicators," Sustainability, MDPI, vol. 15(13), pages 1-15, June.
    8. Mondal, Md. Alam Hossain & Denich, Manfred & Vlek, Paul L.G., 2010. "The future choice of technologies and co-benefits of CO2 emission reduction in Bangladesh power sector," Energy, Elsevier, vol. 35(12), pages 4902-4909.
    9. Mohammad Ershadul Karim & Ridoan Karim & Md. Toriqul Islam & Firdaus Muhammad-Sukki & Nurul Aini Bani & Mohd Nabil Muhtazaruddin, 2019. "Renewable Energy for Sustainable Growth and Development: An Evaluation of Law and Policy of Bangladesh," Sustainability, MDPI, vol. 11(20), pages 1-30, October.
    10. Islam, KM Nazmul & Sarker, Tapan & Taghizadeh-Hesary, Farhad & Atri, Anashuwa Chowdhury & Alam, Mohammad Shafiul, 2021. "Renewable energy generation from livestock waste for a sustainable circular economy in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    11. Hameedullah Zaheb & Habibullah Amiry & Mikaeel Ahmadi & Habibullah Fedayi & Sajida Amiry & Atsushi Yona, 2023. "Maximizing Annual Energy Yield in a Grid-Connected PV Solar Power Plant: Analysis of Seasonal Tilt Angle and Solar Tracking Strategies," Sustainability, MDPI, vol. 15(14), pages 1-20, July.
    12. Rashiqa Abdul Salam & Khuram Pervez Amber & Naeem Iqbal Ratyal & Mehboob Alam & Naveed Akram & Carlos Quiterio Gómez Muñoz & Fausto Pedro García Márquez, 2020. "An Overview on Energy and Development of Energy Integration in Major South Asian Countries: The Building Sector," Energies, MDPI, vol. 13(21), pages 1-37, November.
    13. Ali Jawad Alrubaie & Mohamed Salem & Khalid Yahya & Mahmoud Mohamed & Mohamad Kamarol, 2023. "A Comprehensive Review of Electric Vehicle Charging Stations with Solar Photovoltaic System Considering Market, Technical Requirements, Network Implications, and Future Challenges," Sustainability, MDPI, vol. 15(10), pages 1-26, May.
    14. Shoaib Nazir & Asjad Ali & Abdullah Aftab & Hafiz Abdul Muqeet & Sohrab Mirsaeidi & Jian-Min Zhang, 2023. "Techno-Economic and Environmental Perspectives of Solar Cell Technologies: A Comprehensive Review," Energies, MDPI, vol. 16(13), pages 1-31, June.
    15. Gulagi, Ashish & Ram, Manish & Solomon, A.A. & Khan, Musharof & Breyer, Christian, 2020. "Current energy policies and possible transition scenarios adopting renewable energy: A case study for Bangladesh," Renewable Energy, Elsevier, vol. 155(C), pages 899-920.
    16. Hil Baky, Md. Abdullah & Rahman, Md. Mustafizur & Islam, A.K.M. Sadrul, 2017. "Development of renewable energy sector in Bangladesh: Current status and future potentials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1184-1197.
    17. Khan, Tahsina & Khanam, Shamsun Nahar & Rahman, Md Habibur & Rahman, Syed Mahbubur, 2019. "Determinants of microfinance facility for installing solar home system (SHS) in rural Bangladesh," Energy Policy, Elsevier, vol. 132(C), pages 299-308.
    18. Das, Barun K. & Hoque, Najmul & Mandal, Soumya & Pal, Tapas Kumar & Raihan, Md Abu, 2017. "A techno-economic feasibility of a stand-alone hybrid power generation for remote area application in Bangladesh," Energy, Elsevier, vol. 134(C), pages 775-788.
    19. Md. Abdullah-Al-Mahbub & Abu Reza Md. Towfiqul Islam & Hussein Almohamad & Ahmed Abdullah Al Dughairi & Motrih Al-Mutiry & Hazem Ghassan Abdo, 2022. "Different Forms of Solar Energy Progress: The Fast-Growing Eco-Friendly Energy Source in Bangladesh for a Sustainable Future," Energies, MDPI, vol. 15(18), pages 1-28, September.
    20. Zhang, XiaoWei & Yu, Xiaoping & Ye, Xinping & Pirouzi, Sasan, 2023. "Economic energy managementof networked flexi-renewable energy hubs according to uncertainty modeling by the unscented transformation method," Energy, Elsevier, vol. 278(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1494-:d:1055899. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.