Day-ahead spatiotemporal solar irradiation forecasting using frequency-based hybrid principal component analysis and neural network
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2019.04.056
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- van der Meer, D.W. & Shepero, M. & Svensson, A. & Widén, J. & Munkhammar, J., 2018. "Probabilistic forecasting of electricity consumption, photovoltaic power generation and net demand of an individual building using Gaussian Processes," Applied Energy, Elsevier, vol. 213(C), pages 195-207.
- Skittides, Christina & Früh, Wolf-Gerrit, 2014. "Wind forecasting using Principal Component Analysis," Renewable Energy, Elsevier, vol. 69(C), pages 365-374.
- Yang, Dazhi & Gu, Chaojun & Dong, Zibo & Jirutitijaroen, Panida & Chen, Nan & Walsh, Wilfred M., 2013. "Solar irradiance forecasting using spatial-temporal covariance structures and time-forward kriging," Renewable Energy, Elsevier, vol. 60(C), pages 235-245.
- Lucheroni, Carlo & Boland, John & Ragno, Costantino, 2019. "Scenario generation and probabilistic forecasting analysis of spatio-temporal wind speed series with multivariate autoregressive volatility models," Applied Energy, Elsevier, vol. 239(C), pages 1226-1241.
- Zhang, Jinhua & Yan, Jie & Infield, David & Liu, Yongqian & Lien, Fue-sang, 2019. "Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model," Applied Energy, Elsevier, vol. 241(C), pages 229-244.
- Ma, Tao & Yang, Hongxing & Lu, Lin & Peng, Jinqing, 2015. "Optimal design of an autonomous solar–wind-pumped storage power supply system," Applied Energy, Elsevier, vol. 160(C), pages 728-736.
- André, Maïna & Dabo-Niang, Sophie & Soubdhan, Ted & Ould-Baba, Hanany, 2016. "Predictive spatio-temporal model for spatially sparse global solar radiation data," Energy, Elsevier, vol. 111(C), pages 599-608.
- Tian, Chengshi & Hao, Yan & Hu, Jianming, 2018. "A novel wind speed forecasting system based on hybrid data preprocessing and multi-objective optimization," Applied Energy, Elsevier, vol. 231(C), pages 301-319.
- Agüera-Pérez, Agustín & Palomares-Salas, José Carlos & González de la Rosa, Juan José & Florencias-Oliveros, Olivia, 2018. "Weather forecasts for microgrid energy management: Review, discussion and recommendations," Applied Energy, Elsevier, vol. 228(C), pages 265-278.
- C. A. Glasbey & D. J. Allcroft, 2008. "A spatiotemporal auto‐regressive moving average model for solar radiation," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 57(3), pages 343-355, June.
- Kaplani, E. & Kaplanis, S. & Mondal, S., 2018. "A spatiotemporal universal model for the prediction of the global solar radiation based on Fourier series and the site altitude," Renewable Energy, Elsevier, vol. 126(C), pages 933-942.
- Hodge, Bri-Mathias & Brancucci Martinez-Anido, Carlo & Wang, Qin & Chartan, Erol & Florita, Anthony & Kiviluoma, Juha, 2018. "The combined value of wind and solar power forecasting improvements and electricity storage," Applied Energy, Elsevier, vol. 214(C), pages 1-15.
- Li, Gong & Shi, Jing, 2010. "On comparing three artificial neural networks for wind speed forecasting," Applied Energy, Elsevier, vol. 87(7), pages 2313-2320, July.
- Aguiar, L. Mazorra & Pereira, B. & Lauret, P. & Díaz, F. & David, M., 2016. "Combining solar irradiance measurements, satellite-derived data and a numerical weather prediction model to improve intra-day solar forecasting," Renewable Energy, Elsevier, vol. 97(C), pages 599-610.
- Dambreville, Romain & Blanc, Philippe & Chanussot, Jocelyn & Boldo, Didier, 2014. "Very short term forecasting of the Global Horizontal Irradiance using a spatio-temporal autoregressive model," Renewable Energy, Elsevier, vol. 72(C), pages 291-300.
- Prasad, Ramendra & Ali, Mumtaz & Kwan, Paul & Khan, Huma, 2019. "Designing a multi-stage multivariate empirical mode decomposition coupled with ant colony optimization and random forest model to forecast monthly solar radiation," Applied Energy, Elsevier, vol. 236(C), pages 778-792.
- Liu, Luyao & Zhao, Yi & Chang, Dongliang & Xie, Jiyang & Ma, Zhanyu & Sun, Qie & Yin, Hongyi & Wennersten, Ronald, 2018. "Prediction of short-term PV power output and uncertainty analysis," Applied Energy, Elsevier, vol. 228(C), pages 700-711.
- Shireen, Tahasin & Shao, Chenhui & Wang, Hui & Li, Jingjing & Zhang, Xi & Li, Mingyang, 2018. "Iterative multi-task learning for time-series modeling of solar panel PV outputs," Applied Energy, Elsevier, vol. 212(C), pages 654-662.
- Leva, S. & Dolara, A. & Grimaccia, F. & Mussetta, M. & Ogliari, E., 2017. "Analysis and validation of 24 hours ahead neural network forecasting of photovoltaic output power," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 131(C), pages 88-100.
- Claudio Monteiro & Tiago Santos & L. Alfredo Fernandez-Jimenez & Ignacio J. Ramirez-Rosado & M. Sonia Terreros-Olarte, 2013. "Short-Term Power Forecasting Model for Photovoltaic Plants Based on Historical Similarity," Energies, MDPI, vol. 6(5), pages 1-20, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Lan, Hai & Yin, He & Hong, Ying-Yi & Wen, Shuli & Yu, David C. & Cheng, Peng, 2018. "Day-ahead spatio-temporal forecasting of solar irradiation along a navigation route," Applied Energy, Elsevier, vol. 211(C), pages 15-27.
- Wu, Thomas & Hu, Ruifeng & Zhu, Hongyu & Jiang, Meihui & Lv, Kunye & Dong, Yunxuan & Zhang, Dongdong, 2024. "Combined IXGBoost-KELM short-term photovoltaic power prediction model based on multidimensional similar day clustering and dual decomposition," Energy, Elsevier, vol. 288(C).
- Fateh Mehazzem & Maina André & Rudy Calif, 2022. "Efficient Output Photovoltaic Power Prediction Based on MPPT Fuzzy Logic Technique and Solar Spatio-Temporal Forecasting Approach in a Tropical Insular Region," Energies, MDPI, vol. 15(22), pages 1-21, November.
- Llinet Benavides Cesar & Rodrigo Amaro e Silva & Miguel Ángel Manso Callejo & Calimanut-Ionut Cira, 2022. "Review on Spatio-Temporal Solar Forecasting Methods Driven by In Situ Measurements or Their Combination with Satellite and Numerical Weather Prediction (NWP) Estimates," Energies, MDPI, vol. 15(12), pages 1-23, June.
- Wang, Xiaoyang & Sun, Yunlin & Luo, Duo & Peng, Jinqing, 2022. "Comparative study of machine learning approaches for predicting short-term photovoltaic power output based on weather type classification," Energy, Elsevier, vol. 240(C).
- Ahmed, R. & Sreeram, V. & Mishra, Y. & Arif, M.D., 2020. "A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
- Mariz B. Arias & Sungwoo Bae, 2021. "Solar Photovoltaic Power Prediction Using Big Data Tools," Sustainability, MDPI, vol. 13(24), pages 1-19, December.
- Marchesoni-Acland, Franco & Alonso-Suárez, Rodrigo, 2020. "Intra-day solar irradiation forecast using RLS filters and satellite images," Renewable Energy, Elsevier, vol. 161(C), pages 1140-1154.
- Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
- Liu, Luyao & Zhao, Yi & Chang, Dongliang & Xie, Jiyang & Ma, Zhanyu & Sun, Qie & Yin, Hongyi & Wennersten, Ronald, 2018. "Prediction of short-term PV power output and uncertainty analysis," Applied Energy, Elsevier, vol. 228(C), pages 700-711.
- Rosato, Antonello & Panella, Massimo & Andreotti, Amedeo & Mohammed, Osama A. & Araneo, Rodolfo, 2021. "Two-stage dynamic management in energy communities using a decision system based on elastic net regularization," Applied Energy, Elsevier, vol. 291(C).
- Patrick, Joshua D. & Harvill, Jane L. & Hansen, Clifford W., 2016. "A semiparametric spatio-temporal model for solar irradiance data," Renewable Energy, Elsevier, vol. 87(P1), pages 15-30.
- Sandra Minerva Valdivia-Bautista & José Antonio Domínguez-Navarro & Marco Pérez-Cisneros & Carlos Jesahel Vega-Gómez & Beatriz Castillo-Téllez, 2023. "Artificial Intelligence in Wind Speed Forecasting: A Review," Energies, MDPI, vol. 16(5), pages 1-28, March.
- Kelachukwu J. Iheanetu, 2022. "Solar Photovoltaic Power Forecasting: A Review," Sustainability, MDPI, vol. 14(24), pages 1-31, December.
- Martina Radicioni & Valentina Lucaferri & Francesco De Lia & Antonino Laudani & Roberto Lo Presti & Gabriele Maria Lozito & Francesco Riganti Fulginei & Riccardo Schioppo & Mario Tucci, 2021. "Power Forecasting of a Photovoltaic Plant Located in ENEA Casaccia Research Center," Energies, MDPI, vol. 14(3), pages 1-22, January.
- Alfredo Nespoli & Emanuele Ogliari & Sonia Leva & Alessandro Massi Pavan & Adel Mellit & Vanni Lughi & Alberto Dolara, 2019. "Day-Ahead Photovoltaic Forecasting: A Comparison of the Most Effective Techniques," Energies, MDPI, vol. 12(9), pages 1-15, April.
- Rodríguez, Fermín & Galarza, Ainhoa & Vasquez, Juan C. & Guerrero, Josep M., 2022. "Using deep learning and meteorological parameters to forecast the photovoltaic generators intra-hour output power interval for smart grid control," Energy, Elsevier, vol. 239(PB).
- Jafarzadeh Ghoushchi, Saeid & Manjili, Sobhan & Mardani, Abbas & Saraji, Mahyar Kamali, 2021. "An extended new approach for forecasting short-term wind power using modified fuzzy wavelet neural network: A case study in wind power plant," Energy, Elsevier, vol. 223(C).
- Sarmas, Elissaios & Spiliotis, Evangelos & Stamatopoulos, Efstathios & Marinakis, Vangelis & Doukas, Haris, 2023. "Short-term photovoltaic power forecasting using meta-learning and numerical weather prediction independent Long Short-Term Memory models," Renewable Energy, Elsevier, vol. 216(C).
- André, Maïna & Dabo-Niang, Sophie & Soubdhan, Ted & Ould-Baba, Hanany, 2016. "Predictive spatio-temporal model for spatially sparse global solar radiation data," Energy, Elsevier, vol. 111(C), pages 599-608.
More about this item
Keywords
Artificial neural network; Discrete Fourier transform; Renewable energy; Spatiotemporal forecasting; Principal component analysis;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:247:y:2019:i:c:p:389-402. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.