IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i24p6555-d460722.html
   My bibliography  Save this article

Short-Term Forecasting of Large-Scale Clouds Impact on Downwelling Surface Solar Irradiation

Author

Listed:
  • Panagiotis Kosmopoulos

    (Institute for Environmental Research and Sustainable Development, National Observatory of Athens (IERSD/NOA), 15236 Athens, Greece
    Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing, National Observatory of Athens (IAASARS/NOA), 15236 Athens, Greece)

  • Dimitris Kouroutsidis

    (Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing, National Observatory of Athens (IAASARS/NOA), 15236 Athens, Greece)

  • Kyriakoula Papachristopoulou

    (Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing, National Observatory of Athens (IAASARS/NOA), 15236 Athens, Greece
    Department of Geology and Geoenvironment, National and Kapodistrian University of Athens, 15784 Athens, Greece)

  • Panagiotis Ioannis Raptis

    (Institute for Environmental Research and Sustainable Development, National Observatory of Athens (IERSD/NOA), 15236 Athens, Greece)

  • Akriti Masoom

    (Mechanical and Industrial Engineering Department, Indian Institute of Technology Roorkee, Roorkee 247667, India)

  • Yves-Marie Saint-Drenan

    (O.I.E. Centre Observation, Impacts, Energy, MINES ParisTech, PSL Research University, 06904 Sophia Antipolis, France)

  • Philippe Blanc

    (O.I.E. Centre Observation, Impacts, Energy, MINES ParisTech, PSL Research University, 06904 Sophia Antipolis, France)

  • Charalampos Kontoes

    (Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing, National Observatory of Athens (IAASARS/NOA), 15236 Athens, Greece)

  • Stelios Kazadzis

    (Physikalisch Meteorologisches Observatorium Davos, World Radiation Center (PMOD/WRC), CH-7260 Davos, Switzerland)

Abstract

This study focuses on the use of cloud motion vectors (CMV) and fast radiative transfer models (FRTM) in the prospect of forecasting downwelling surface solar irradiation (DSSI). Using near-real-time cloud optical thickness (COT) data derived from multispectral images from the spinning enhanced visible and infrared imager (SEVIRI) onboard the Meteosat second generation (MSG) satellite, we introduce a novel short-term forecasting system (3 h ahead) that is capable of calculating solar energy in large-scale (1.5 million-pixel area covering Europe and North Africa) and in high spatial (5 km over nadir) and temporal resolution (15 min intervals). For the operational implementation of such a big data computing architecture (20 million simulations in less than a minute), we exploit a synergy of high-performance computing and deterministic image processing technologies (dense optical flow estimation). The impact of clouds forecasting uncertainty on DSSI was quantified in terms of cloud modification factor (CMF), for all-sky and clear sky conditions, for more generalized results. The forecast accuracy was evaluated against the real COT and CMF images under different cloud movement patterns, and the correlation was found to range from 0.9 to 0.5 for 15 min and 3 h ahead, respectively. The CMV forecast variability revealed an overall DSSI uncertainty in the range 18–34% under consecutive alternations of cloud presence, highlighting the ability of the proposed system to follow the cloud movement in opposition to the baseline persistent forecasting, which considers the effects of topocentric sun path on DSSI but keeps the clouds in “fixed” positions, and which presented an overall uncertainty of 30–43%. The proposed system aims to support the distributed solar plant energy production management, as well as electricity handling entities and smart grid operations.

Suggested Citation

  • Panagiotis Kosmopoulos & Dimitris Kouroutsidis & Kyriakoula Papachristopoulou & Panagiotis Ioannis Raptis & Akriti Masoom & Yves-Marie Saint-Drenan & Philippe Blanc & Charalampos Kontoes & Stelios Kaz, 2020. "Short-Term Forecasting of Large-Scale Clouds Impact on Downwelling Surface Solar Irradiation," Energies, MDPI, vol. 13(24), pages 1-22, December.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:24:p:6555-:d:460722
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/24/6555/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/24/6555/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Verbois, Hadrien & Blanc, Philippe & Huva, Robert & Saint-Drenan, Yves-Marie & Rusydi, Andrivo & Thiery, Alexandre, 2020. "Beyond quadratic error: Case-study of a multiple criteria approach to the performance assessment of numerical forecasts of solar irradiance in the tropics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    2. Juan Du & Qilong Min & Penglin Zhang & Jinhui Guo & Jun Yang & Bangsheng Yin, 2018. "Short-Term Solar Irradiance Forecasts Using Sky Images and Radiative Transfer Model," Energies, MDPI, vol. 11(5), pages 1-16, May.
    3. Diagne, Maimouna & David, Mathieu & Lauret, Philippe & Boland, John & Schmutz, Nicolas, 2013. "Review of solar irradiance forecasting methods and a proposition for small-scale insular grids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 65-76.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kosmopoulos, Panagiotis & Dhake, Harshal & Melita, Nefeli & Tagarakis, Konstantinos & Georgakis, Aggelos & Stefas, Avgoustinos & Vaggelis, Orestis & Korre, Valentina & Kashyap, Yashwant, 2024. "Multi-Layer Cloud Motion Vector Forecasting for Solar Energy Applications," Applied Energy, Elsevier, vol. 353(PB).
    2. Kosmopoulos, Panagiotis & Dhake, Harshal & Kartoudi, Danai & Tsavalos, Anastasios & Koutsantoni, Pelagia & Katranitsas, Apostolos & Lavdakis, Nikolaos & Mengou, Eftihia & Kashyap, Yashwant, 2024. "Ray-Tracing modeling for urban photovoltaic energy planning and management," Applied Energy, Elsevier, vol. 369(C).
    3. Myeongchan Oh & Chang Ki Kim & Boyoung Kim & Changyeol Yun & Yong-Heack Kang & Hyun-Goo Kim, 2021. "Spatiotemporal Optimization for Short-Term Solar Forecasting Based on Satellite Imagery," Energies, MDPI, vol. 14(8), pages 1-18, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stéphanie Monjoly & Maina André & Rudy Calif & Ted Soubdhan, 2019. "Forecast Horizon and Solar Variability Influences on the Performances of Multiscale Hybrid Forecast Model," Energies, MDPI, vol. 12(12), pages 1-20, June.
    2. Voyant, Cyril & Motte, Fabrice & Notton, Gilles & Fouilloy, Alexis & Nivet, Marie-Laure & Duchaud, Jean-Laurent, 2018. "Prediction intervals for global solar irradiation forecasting using regression trees methods," Renewable Energy, Elsevier, vol. 126(C), pages 332-340.
    3. Boland, John, 2015. "Spatial-temporal forecasting of solar radiation," Renewable Energy, Elsevier, vol. 75(C), pages 607-616.
    4. Javier Borquez & Hector Chavez & Karina A. Barbosa & Marcela Jamett & Rodrigo Acuna, 2020. "A Simple Distribution Energy Tariff under the Penetration of DG," Energies, MDPI, vol. 13(8), pages 1-17, April.
    5. Wang, Zhenyu & Zhang, Yunpeng & Li, Guorong & Zhang, Jinlong & Zhou, Hai & Wu, Ji, 2024. "A novel solar irradiance forecasting method based on multi-physical process of atmosphere optics and LSTM-BP model," Renewable Energy, Elsevier, vol. 226(C).
    6. Ahmed, R. & Sreeram, V. & Mishra, Y. & Arif, M.D., 2020. "A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    7. John Boland & Sleiman Farah & Lei Bai, 2022. "Forecasting of Wind and Solar Farm Output in the Australian National Electricity Market: A Review," Energies, MDPI, vol. 15(1), pages 1-18, January.
    8. Ping-Huan Kuo & Chiou-Jye Huang, 2018. "A Green Energy Application in Energy Management Systems by an Artificial Intelligence-Based Solar Radiation Forecasting Model," Energies, MDPI, vol. 11(4), pages 1-15, April.
    9. Mohamed Massaoudi & Ines Chihi & Lilia Sidhom & Mohamed Trabelsi & Shady S. Refaat & Fakhreddine S. Oueslati, 2021. "Enhanced Random Forest Model for Robust Short-Term Photovoltaic Power Forecasting Using Weather Measurements," Energies, MDPI, vol. 14(13), pages 1-20, July.
    10. Elsinga, Boudewijn & van Sark, Wilfried G.J.H.M., 2017. "Short-term peer-to-peer solar forecasting in a network of photovoltaic systems," Applied Energy, Elsevier, vol. 206(C), pages 1464-1483.
    11. Reikard, Gordon & Haupt, Sue Ellen & Jensen, Tara, 2017. "Forecasting ground-level irradiance over short horizons: Time series, meteorological, and time-varying parameter models," Renewable Energy, Elsevier, vol. 112(C), pages 474-485.
    12. Abhnil Amtesh Prasad & Merlinde Kay, 2020. "Assessment of Simulated Solar Irradiance on Days of High Intermittency Using WRF-Solar," Energies, MDPI, vol. 13(2), pages 1-22, January.
    13. Àlex Alonso & Jordi de la Hoz & Helena Martín & Sergio Coronas & Pep Salas & José Matas, 2020. "A Comprehensive Model for the Design of a Microgrid under Regulatory Constraints Using Synthetical Data Generation and Stochastic Optimization," Energies, MDPI, vol. 13(21), pages 1-26, October.
    14. Mahmoud Dhimish & Pavlos I. Lazaridis, 2022. "Approximating Shading Ratio Using the Total-Sky Imaging System: An Application for Photovoltaic Systems," Energies, MDPI, vol. 15(21), pages 1-16, November.
    15. Da Liu & Kun Sun & Han Huang & Pingzhou Tang, 2018. "Monthly Load Forecasting Based on Economic Data by Decomposition Integration Theory," Sustainability, MDPI, vol. 10(9), pages 1-22, September.
    16. Kong, Xiangfei & Du, Xinyu & Xue, Guixiang & Xu, Zhijie, 2023. "Multi-step short-term solar radiation prediction based on empirical mode decomposition and gated recurrent unit optimized via an attention mechanism," Energy, Elsevier, vol. 282(C).
    17. Louis Desportes & Inbar Fijalkow & Pierre Andry, 2021. "Deep Reinforcement Learning for Hybrid Energy Storage Systems: Balancing Lead and Hydrogen Storage," Energies, MDPI, vol. 14(15), pages 1-22, August.
    18. AlSkaif, Tarek & Dev, Soumyabrata & Visser, Lennard & Hossari, Murhaf & van Sark, Wilfried, 2020. "A systematic analysis of meteorological variables for PV output power estimation," Renewable Energy, Elsevier, vol. 153(C), pages 12-22.
    19. Luerssen, Christoph & Verbois, Hadrien & Gandhi, Oktoviano & Reindl, Thomas & Sekhar, Chandra & Cheong, David, 2021. "Global sensitivity and uncertainty analysis of the levelised cost of storage (LCOS) for solar-PV-powered cooling," Applied Energy, Elsevier, vol. 286(C).
    20. Hannes Schwarz & Valentin Bertsch & Wolf Fichtner, 2018. "Two-stage stochastic, large-scale optimization of a decentralized energy system: a case study focusing on solar PV, heat pumps and storage in a residential quarter," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(1), pages 265-310, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:24:p:6555-:d:460722. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.