IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v143y2019icp985-994.html
   My bibliography  Save this article

Short-term forecasting of solar irradiance

Author

Listed:
  • Paulescu, Marius
  • Paulescu, Eugenia

Abstract

Five statistical models for nowcasting solar irradiance are evaluated from different perspectives. The first four models are purely statistical ones: random walk, moving average, exponential smoothing and autoregressive integrated moving average. These models can be considered as benchmarks of different levels of complexity. The fifth model is a version of the two-state model, an applications suite for nowcasting solar irradiance developed by our team. The two-state model connects in an innovative manner an empirical estimator for clear-sky solar irradiance with a statistical predictor for the sunshine number, a binary indicator stating whether the sun shines or not. On the basis of different error metrics, the models’ performances are analyzed from four perspectives: forecast accuracy, forecast precision, data series granularity and variability in data series. The study is conducted with high-quality radiometric data measured at a high frequency of four samples per minute on the Solar Platform of the West University of Timisoara, Romania. No model is ranked as the best, but the peculiarities that cause a model to perform better than others are discussed. By processing information about the atmospheric transmittance, the two-state model proves a slight advance in the forecast accuracy and a notable performance in the forecast precision.

Suggested Citation

  • Paulescu, Marius & Paulescu, Eugenia, 2019. "Short-term forecasting of solar irradiance," Renewable Energy, Elsevier, vol. 143(C), pages 985-994.
  • Handle: RePEc:eee:renene:v:143:y:2019:i:c:p:985-994
    DOI: 10.1016/j.renene.2019.05.075
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119307487
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.05.075?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Badescu, Viorel & Gueymard, Christian A. & Cheval, Sorin & Oprea, Cristian & Baciu, Madalina & Dumitrescu, Alexandru & Iacobescu, Flavius & Milos, Ioan & Rada, Costel, 2013. "Accuracy analysis for fifty-four clear-sky solar radiation models using routine hourly global irradiance measurements in Romania," Renewable Energy, Elsevier, vol. 55(C), pages 85-103.
    2. Rusen, Selmin Ener & Hammer, Annette & Akinoglu, Bulent G., 2013. "Coupling satellite images with surface measurements of bright sunshine hours to estimate daily solar irradiation on horizontal surface," Renewable Energy, Elsevier, vol. 55(C), pages 212-219.
    3. Sepasi, Saeed & Reihani, Ehsan & Howlader, Abdul M. & Roose, Leon R. & Matsuura, Marc M., 2017. "Very short term load forecasting of a distribution system with high PV penetration," Renewable Energy, Elsevier, vol. 106(C), pages 142-148.
    4. Dong, Zibo & Yang, Dazhi & Reindl, Thomas & Walsh, Wilfred M., 2013. "Short-term solar irradiance forecasting using exponential smoothing state space model," Energy, Elsevier, vol. 55(C), pages 1104-1113.
    5. Yan, Jie & Liu, Yongqian & Han, Shuang & Wang, Yimei & Feng, Shuanglei, 2015. "Reviews on uncertainty analysis of wind power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1322-1330.
    6. Reikard, Gordon & Haupt, Sue Ellen & Jensen, Tara, 2017. "Forecasting ground-level irradiance over short horizons: Time series, meteorological, and time-varying parameter models," Renewable Energy, Elsevier, vol. 112(C), pages 474-485.
    7. Zhu, Tingting & Wei, Haikun & Zhao, Xin & Zhang, Chi & Zhang, Kanjian, 2017. "Clear-sky model for wavelet forecast of direct normal irradiance," Renewable Energy, Elsevier, vol. 104(C), pages 1-8.
    8. Boland, John & David, Mathieu & Lauret, Philippe, 2016. "Short term solar radiation forecasting: Island versus continental sites," Energy, Elsevier, vol. 113(C), pages 186-192.
    9. Paulescu, Marius & Badescu, Viorel & Brabec, Marek, 2013. "Tools for PV (photovoltaic) plant operators: Nowcasting of passing clouds," Energy, Elsevier, vol. 54(C), pages 104-112.
    10. Reikard, Gordon & Hansen, Clifford, 2019. "Forecasting solar irradiance at short horizons: Frequency and time domain models," Renewable Energy, Elsevier, vol. 135(C), pages 1270-1290.
    11. Cheng, Hsu-Yung, 2016. "Hybrid solar irradiance now-casting by fusing Kalman filter and regressor," Renewable Energy, Elsevier, vol. 91(C), pages 434-441.
    12. Li, Mengying & Chu, Yinghao & Pedro, Hugo T.C. & Coimbra, Carlos F.M., 2016. "Quantitative evaluation of the impact of cloud transmittance and cloud velocity on the accuracy of short-term DNI forecasts," Renewable Energy, Elsevier, vol. 86(C), pages 1362-1371.
    13. Sharma, Vishal & Yang, Dazhi & Walsh, Wilfred & Reindl, Thomas, 2016. "Short term solar irradiance forecasting using a mixed wavelet neural network," Renewable Energy, Elsevier, vol. 90(C), pages 481-492.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paulescu, Marius & Stefu, Nicoleta & Dughir, Ciprian & Sabadus, Andreea & Calinoiu, Delia & Badescu, Viorel, 2022. "A simple but accurate two-state model for nowcasting PV power," Renewable Energy, Elsevier, vol. 195(C), pages 322-330.
    2. Puah, Boon Keat & Chong, Lee Wai & Wong, Yee Wan & Begam, K.M. & Khan, Nafizah & Juman, Mohammed Ayoub & Rajkumar, Rajprasad Kumar, 2021. "A regression unsupervised incremental learning algorithm for solar irradiance prediction," Renewable Energy, Elsevier, vol. 164(C), pages 908-925.
    3. Paulescu, Marius & Blaga, Robert & Dughir, Ciprian & Stefu, Nicoleta & Sabadus, Andreea & Calinoiu, Delia & Badescu, Viorel, 2023. "Intra-hour PV power forecasting based on sky imagery," Energy, Elsevier, vol. 279(C).
    4. Rodríguez, Fermín & Martín, Fernando & Fontán, Luis & Galarza, Ainhoa, 2021. "Ensemble of machine learning and spatiotemporal parameters to forecast very short-term solar irradiation to compute photovoltaic generators’ output power," Energy, Elsevier, vol. 229(C).
    5. Anh Ngoc-Lan Huynh & Ravinesh C. Deo & Duc-Anh An-Vo & Mumtaz Ali & Nawin Raj & Shahab Abdulla, 2020. "Near Real-Time Global Solar Radiation Forecasting at Multiple Time-Step Horizons Using the Long Short-Term Memory Network," Energies, MDPI, vol. 13(14), pages 1-30, July.
    6. Hartmann, Bálint, 2020. "Comparing various solar irradiance categorization methods – A critique on robustness," Renewable Energy, Elsevier, vol. 154(C), pages 661-671.
    7. Sergiu-Mihai Hategan & Nicoleta Stefu & Marius Paulescu, 2023. "Calibration of GFS Solar Irradiation Forecasts: A Case Study in Romania," Energies, MDPI, vol. 16(11), pages 1-11, May.
    8. Adam Krechowicz & Maria Krechowicz & Katarzyna Poczeta, 2022. "Machine Learning Approaches to Predict Electricity Production from Renewable Energy Sources," Energies, MDPI, vol. 15(23), pages 1-41, December.
    9. Samu, Remember & Calais, Martina & Shafiullah, G.M. & Moghbel, Moayed & Shoeb, Md Asaduzzaman & Nouri, Bijan & Blum, Niklas, 2021. "Applications for solar irradiance nowcasting in the control of microgrids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    10. Paulescu, Eugenia & Paulescu, Marius, 2021. "A new clear sky solar irradiance model," Renewable Energy, Elsevier, vol. 179(C), pages 2094-2103.
    11. Sergiu-Mihai Hategan & Nicoleta Stefu & Marius Paulescu, 2023. "An Ensemble Approach for Intra-Hour Forecasting of Solar Resource," Energies, MDPI, vol. 16(18), pages 1-12, September.
    12. Ming Meng & Chenge Song, 2020. "Daily Photovoltaic Power Generation Forecasting Model Based on Random Forest Algorithm for North China in Winter," Sustainability, MDPI, vol. 12(6), pages 1-17, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, Fan & Zhang, Yao & Wang, Jianxue, 2023. "Recent advances in intra-hour solar forecasting: A review of ground-based sky image methods," International Journal of Forecasting, Elsevier, vol. 39(1), pages 244-265.
    2. Stéphanie Monjoly & Maina André & Rudy Calif & Ted Soubdhan, 2019. "Forecast Horizon and Solar Variability Influences on the Performances of Multiscale Hybrid Forecast Model," Energies, MDPI, vol. 12(12), pages 1-20, June.
    3. Lopes, Francis M. & Conceição, Ricardo & Silva, Hugo G. & Salgado, Rui & Collares-Pereira, Manuel, 2021. "Improved ECMWF forecasts of direct normal irradiance: A tool for better operational strategies in concentrating solar power plants," Renewable Energy, Elsevier, vol. 163(C), pages 755-771.
    4. Akarslan, Emre & Hocaoglu, Fatih Onur & Edizkan, Rifat, 2018. "Novel short term solar irradiance forecasting models," Renewable Energy, Elsevier, vol. 123(C), pages 58-66.
    5. Reikard, Gordon & Hansen, Clifford, 2019. "Forecasting solar irradiance at short horizons: Frequency and time domain models," Renewable Energy, Elsevier, vol. 135(C), pages 1270-1290.
    6. Rodríguez, Fermín & Martín, Fernando & Fontán, Luis & Galarza, Ainhoa, 2021. "Ensemble of machine learning and spatiotemporal parameters to forecast very short-term solar irradiation to compute photovoltaic generators’ output power," Energy, Elsevier, vol. 229(C).
    7. Croonenbroeck, Carsten & Stadtmann, Georg, 2019. "Renewable generation forecast studies – Review and good practice guidance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 312-322.
    8. Ghimire, Sujan & Deo, Ravinesh C. & Casillas-Pérez, David & Salcedo-Sanz, Sancho, 2022. "Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise Deep Residual model for short-term multi-step solar radiation prediction," Renewable Energy, Elsevier, vol. 190(C), pages 408-424.
    9. Teke, Ahmet & Yıldırım, H. Başak & Çelik, Özgür, 2015. "Evaluation and performance comparison of different models for the estimation of solar radiation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1097-1107.
    10. Rodríguez, Fermín & Galarza, Ainhoa & Vasquez, Juan C. & Guerrero, Josep M., 2022. "Using deep learning and meteorological parameters to forecast the photovoltaic generators intra-hour output power interval for smart grid control," Energy, Elsevier, vol. 239(PB).
    11. Pedro, Hugo T.C. & Coimbra, Carlos F.M., 2015. "Nearest-neighbor methodology for prediction of intra-hour global horizontal and direct normal irradiances," Renewable Energy, Elsevier, vol. 80(C), pages 770-782.
    12. Pedro, Hugo T.C. & Lim, Edwin & Coimbra, Carlos F.M., 2018. "A database infrastructure to implement real-time solar and wind power generation intra-hour forecasts," Renewable Energy, Elsevier, vol. 123(C), pages 513-525.
    13. John Boland, 2020. "Characterising Seasonality of Solar Radiation and Solar Farm Output," Energies, MDPI, vol. 13(2), pages 1-15, January.
    14. Benali, L. & Notton, G. & Fouilloy, A. & Voyant, C. & Dizene, R., 2019. "Solar radiation forecasting using artificial neural network and random forest methods: Application to normal beam, horizontal diffuse and global components," Renewable Energy, Elsevier, vol. 132(C), pages 871-884.
    15. Wang, Fei & Lu, Xiaoxing & Mei, Shengwei & Su, Ying & Zhen, Zhao & Zou, Zubing & Zhang, Xuemin & Yin, Rui & Duić, Neven & Shafie-khah, Miadreza & Catalão, João P.S., 2022. "A satellite image data based ultra-short-term solar PV power forecasting method considering cloud information from neighboring plant," Energy, Elsevier, vol. 238(PC).
    16. Faramarz Saghi & Mustafa Jahangoshai Rezaee, 2023. "Integrating Wavelet Decomposition and Fuzzy Transformation for Improving the Accuracy of Forecasting Crude Oil Price," Computational Economics, Springer;Society for Computational Economics, vol. 61(2), pages 559-591, February.
    17. Pin Li & Jinsuo Zhang, 2019. "Is China’s Energy Supply Sustainable? New Research Model Based on the Exponential Smoothing and GM(1,1) Methods," Energies, MDPI, vol. 12(2), pages 1-30, January.
    18. Ahmed, R. & Sreeram, V. & Mishra, Y. & Arif, M.D., 2020. "A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    19. Rao, Congjun & Zhang, Yue & Wen, Jianghui & Xiao, Xinping & Goh, Mark, 2023. "Energy demand forecasting in China: A support vector regression-compositional data second exponential smoothing model," Energy, Elsevier, vol. 263(PC).
    20. Wang, Anming & Liu, Jiping & Liu, Ming & Li, Gen & Yan, Junjie, 2019. "Dynamic modeling and behavior of parabolic trough concentrated solar power system under cloudy conditions," Energy, Elsevier, vol. 177(C), pages 106-120.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:143:y:2019:i:c:p:985-994. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.