IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2018i1p47-d193006.html
   My bibliography  Save this article

Point Absorber Wave Energy Harvesters: A Review of Recent Developments

Author

Listed:
  • Elie Al Shami

    (School of Engineering, RMIT University, Bundoora, Victoria 3083, Australia)

  • Ran Zhang

    (School of Engineering, RMIT University, Bundoora, Victoria 3083, Australia)

  • Xu Wang

    (School of Engineering, RMIT University, Bundoora, Victoria 3083, Australia)

Abstract

Even though ocean waves around the world are known to contain high and dense amounts of energy, wave energy harvesters are still not as mature as other forms of renewable energy harvesting devices, especially when it comes to commercialization, mass production, and grid integration, but with the recent studies and optimizations, the point absorber wave energy harvester might be a potential candidate to stand out as the best solution to harvest energy from highly energetic locations around the world’s oceans. This paper presents an extensive literature review on point absorber wave energy harvesters and covers their recent theoretical and experimental development. The paper focuses on three main parts: One-body point absorbers, two-body point absorbers, and power take-offs. This review showcases the high amount of work being done to push point absorbers towards technological maturity to eventually kick off commercialization and mass production. It should also provide a good background on the recent status of point absorber development for researchers in the field.

Suggested Citation

  • Elie Al Shami & Ran Zhang & Xu Wang, 2018. "Point Absorber Wave Energy Harvesters: A Review of Recent Developments," Energies, MDPI, vol. 12(1), pages 1-36, December.
  • Handle: RePEc:gam:jeners:v:12:y:2018:i:1:p:47-:d:193006
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/1/47/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/1/47/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lejerskog, Erik & Boström, Cecilia & Hai, Ling & Waters, Rafael & Leijon, Mats, 2015. "Experimental results on power absorption from a wave energy converter at the Lysekil wave energy research site," Renewable Energy, Elsevier, vol. 77(C), pages 9-14.
    2. Arena, Felice & Laface, Valentina & Malara, Giovanni & Romolo, Alessandra & Viviano, Antonino & Fiamma, Vincenzo & Sannino, Gianmaria & Carillo, Adriana, 2015. "Wave climate analysis for the design of wave energy harvesters in the Mediterranean Sea," Renewable Energy, Elsevier, vol. 77(C), pages 125-141.
    3. Yin, Xiuxing & Zhao, Xiaowei & Zhang, Wencan, 2018. "A novel hydro-kite like energy converter for harnessing both ocean wave and current energy," Energy, Elsevier, vol. 158(C), pages 1204-1212.
    4. Yadong Wen & Weijun Wang & Hua Liu & Longbo Mao & Hongju Mi & Wenqiang Wang & Guoping Zhang, 2018. "A Shape Optimization Method of a Specified Point Absorber Wave Energy Converter for the South China Sea," Energies, MDPI, vol. 11(10), pages 1-22, October.
    5. Son, Daewoong & Belissen, Valentin & Yeung, Ronald W., 2016. "Performance validation and optimization of a dual coaxial-cylinder ocean-wave energy extractor," Renewable Energy, Elsevier, vol. 92(C), pages 192-201.
    6. Jin, Siya & Patton, Ron J. & Guo, Bingyong, 2018. "Viscosity effect on a point absorber wave energy converter hydrodynamics validated by simulation and experiment," Renewable Energy, Elsevier, vol. 129(PA), pages 500-512.
    7. Wang, Liguo & Isberg, Jan & Tedeschi, Elisabetta, 2018. "Review of control strategies for wave energy conversion systems and their validation: the wave-to-wire approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 366-379.
    8. Agamloh, Emmanuel B. & Wallace, Alan K. & von Jouanne, Annette, 2008. "Application of fluid–structure interaction simulation of an ocean wave energy extraction device," Renewable Energy, Elsevier, vol. 33(4), pages 748-757.
    9. Liang, Changwei & Zuo, Lei, 2017. "On the dynamics and design of a two-body wave energy converter," Renewable Energy, Elsevier, vol. 101(C), pages 265-274.
    10. Al Shami, Elie & Wang, Xu & Zhang, Ran & Zuo, Lei, 2019. "A parameter study and optimization of two body wave energy converters," Renewable Energy, Elsevier, vol. 131(C), pages 1-13.
    11. Viet, N.V. & Xie, X.D. & Liew, K.M. & Banthia, N. & Wang, Q., 2016. "Energy harvesting from ocean waves by a floating energy harvester," Energy, Elsevier, vol. 112(C), pages 1219-1226.
    12. Gao, Yuping & Shao, Shuangquan & Zou, Huiming & Tang, Mingsheng & Xu, Hongbo & Tian, Changqing, 2016. "A fully floating system for a wave energy converter with direct-driven linear generator," Energy, Elsevier, vol. 95(C), pages 99-109.
    13. Zang, Zhipeng & Zhang, Qinghe & Qi, Yue & Fu, Xiaoying, 2018. "Hydrodynamic responses and efficiency analyses of a heaving-buoy wave energy converter with PTO damping in regular and irregular waves," Renewable Energy, Elsevier, vol. 116(PA), pages 527-542.
    14. Ozkop, Emre & Altas, Ismail H., 2017. "Control, power and electrical components in wave energy conversion systems: A review of the technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 106-115.
    15. Babarit, A. & Hals, J. & Muliawan, M.J. & Kurniawan, A. & Moan, T. & Krokstad, J., 2012. "Numerical benchmarking study of a selection of wave energy converters," Renewable Energy, Elsevier, vol. 41(C), pages 44-63.
    16. Kim, Byung-Ha & Wata, Joji & Zullah, Mohammed Asid & Ahmed, M. Rafiuddin & Lee, Young-Ho, 2015. "Numerical and experimental studies on the PTO system of a novel floating wave energy converter," Renewable Energy, Elsevier, vol. 79(C), pages 111-121.
    17. Li, Ye & Yu, Yi-Hsiang, 2012. "A synthesis of numerical methods for modeling wave energy converter-point absorbers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4352-4364.
    18. Zhenwei Liu & Xu Wang & Ran Zhang & Liuping Wang, 2018. "A Dimensionless Parameter Analysis of a Cylindrical Tube Electromagnetic Vibration Energy Harvester and Its Oscillator Nonlinearity Effect," Energies, MDPI, vol. 11(7), pages 1-21, June.
    19. Agamloh, Emmanuel B. & Wallace, Alan K. & von Jouanne, Annette, 2008. "A novel direct-drive ocean wave energy extraction concept with contact-less force transmission system," Renewable Energy, Elsevier, vol. 33(3), pages 520-529.
    20. Silvia Bozzi & Adrià Moreno Miquel & Alessandro Antonini & Giuseppe Passoni & Renata Archetti, 2013. "Modeling of a Point Absorber for Energy Conversion in Italian Seas," Energies, MDPI, vol. 6(6), pages 1-19, June.
    21. Sergiienko, N.Y. & Cazzolato, B.S. & Ding, B. & Hardy, P. & Arjomandi, M., 2017. "Performance comparison of the floating and fully submerged quasi-point absorber wave energy converters," Renewable Energy, Elsevier, vol. 108(C), pages 425-437.
    22. Kara, Fuat, 2010. "Time domain prediction of power absorption from ocean waves with latching control," Renewable Energy, Elsevier, vol. 35(2), pages 423-434.
    23. Bachynski, Erin E. & Young, Yin Lu & Yeung, Ronald W., 2012. "Analysis and optimization of a tethered wave energy converter in irregular waves," Renewable Energy, Elsevier, vol. 48(C), pages 133-145.
    24. Guo, Bingyong & Patton, Ron J. & Jin, Siya & Lan, Jianglin, 2018. "Numerical and experimental studies of excitation force approximation for wave energy conversion," Renewable Energy, Elsevier, vol. 125(C), pages 877-889.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Santhakumar, Srinivasan & Meerman, Hans & Faaij, André, 2024. "Future costs of key emerging offshore renewable energy technologies," Renewable Energy, Elsevier, vol. 222(C).
    2. Liu, Yao & Chen, Weimin & Zhang, Xinshu & Dong, Guoxiang & Jiang, Jinhui, 2023. "Wave energy conversion using heaving oscillator inside ship: Conceptual design, mathematical model and parametric study," Renewable Energy, Elsevier, vol. 219(P2).
    3. Al Shami, Elie & Wang, Zhun & Wang, Xu, 2021. "Non-linear dynamic simulations of two-body wave energy converters via identification of viscous drag coefficients of different shapes of the submerged body based on numerical wave tank CFD simulation," Renewable Energy, Elsevier, vol. 179(C), pages 983-997.
    4. Reza Jafari & Pedram Asef & Mohammad Ardebili & Mohammad Mahdi Derakhshani, 2022. "Linear Permanent Magnet Vernier Generators for Wave Energy Applications: Analysis, Challenges, and Opportunities," Sustainability, MDPI, vol. 14(17), pages 1-35, September.
    5. Chen, Shao-En & Pan, Fu-Ting & Yang, Ray-Yeng & Wu, Chia-Che, 2023. "A multi-physics system integration and modeling method for piezoelectric wave energy harvester," Applied Energy, Elsevier, vol. 349(C).
    6. Grasberger, Jeff & Yang, Lisheng & Bacelli, Giorgio & Zuo, Lei, 2024. "Control co-design and optimization of oscillating-surge wave energy converter," Renewable Energy, Elsevier, vol. 225(C).
    7. Iida, Takahito, 2023. "Decomposition and prediction of initial uniform bi-directional water waves using an array of wave-rider buoys," Renewable Energy, Elsevier, vol. 217(C).
    8. Chen, Xianzhi & Lu, Yunfei & Zhou, Songlin & Chen, Weixing, 2024. "Design, modeling and performance analysis of a deformable double-float wave energy converter for AUVs," Energy, Elsevier, vol. 292(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Bingyong & Ringwood, John V., 2021. "Geometric optimisation of wave energy conversion devices: A survey," Applied Energy, Elsevier, vol. 297(C).
    2. Li, Demin & Sharma, Sanjay & Borthwick, Alistair G.L. & Huang, Heao & Dong, Xiaochen & Li, Yanni & Shi, Hongda, 2023. "Experimental study of a floating two-body wave energy converter," Renewable Energy, Elsevier, vol. 218(C).
    3. Shadmani, Alireza & Nikoo, Mohammad Reza & Gandomi, Amir H. & Chen, Mingjie & Nazari, Rouzbeh, 2024. "Advancements in optimizing wave energy converter geometry utilizing metaheuristic algorithms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    4. Rahimi, Amir & Rezaei, Saeed & Parvizian, Jamshid & Mansourzadeh, Shahriar & Lund, Jorrid & Hssini, Radhouane & Düster, Alexander, 2022. "Numerical and experimental study of the hydrodynamic coefficients and power absorption of a two-body point absorber wave energy converter," Renewable Energy, Elsevier, vol. 201(P1), pages 181-193.
    5. Tunde Aderinto & Hua Li, 2019. "Review on Power Performance and Efficiency of Wave Energy Converters," Energies, MDPI, vol. 12(22), pages 1-24, November.
    6. Raju Ahamed & Kristoffer McKee & Ian Howard, 2022. "A Review of the Linear Generator Type of Wave Energy Converters’ Power Take-Off Systems," Sustainability, MDPI, vol. 14(16), pages 1-42, August.
    7. Li, Demin & Dong, Xiaochen & Borthwick, Alistair G.L. & Sharma, Sanjay & Wang, Tianyuan & Huang, Heao & Shi, Hongda, 2024. "Two-buoy and single-buoy floating wave energy converters: A numerical comparison," Energy, Elsevier, vol. 296(C).
    8. Mohd Afifi Jusoh & Mohd Zamri Ibrahim & Muhamad Zalani Daud & Aliashim Albani & Zulkifli Mohd Yusop, 2019. "Hydraulic Power Take-Off Concepts for Wave Energy Conversion System: A Review," Energies, MDPI, vol. 12(23), pages 1-23, November.
    9. Zang, Zhipeng & Zhang, Qinghe & Qi, Yue & Fu, Xiaoying, 2018. "Hydrodynamic responses and efficiency analyses of a heaving-buoy wave energy converter with PTO damping in regular and irregular waves," Renewable Energy, Elsevier, vol. 116(PA), pages 527-542.
    10. Chen, Shao-En & Pan, Fu-Ting & Yang, Ray-Yeng & Wu, Chia-Che, 2023. "A multi-physics system integration and modeling method for piezoelectric wave energy harvester," Applied Energy, Elsevier, vol. 349(C).
    11. Yao, Ganzhou & Luo, Zirong & Lu, Zhongyue & Wang, Mangkuan & Shang, Jianzhong & Guerrerob, Josep M., 2023. "Unlocking the potential of wave energy conversion: A comprehensive evaluation of advanced maximum power point tracking techniques and hybrid strategies for sustainable energy harvesting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    12. Al Shami, Elie & Wang, Zhun & Wang, Xu, 2021. "Non-linear dynamic simulations of two-body wave energy converters via identification of viscous drag coefficients of different shapes of the submerged body based on numerical wave tank CFD simulation," Renewable Energy, Elsevier, vol. 179(C), pages 983-997.
    13. Cai, Qinlin & Zhu, Songye, 2021. "Applying double-mass pendulum oscillator with tunable ultra-low frequency in wave energy converters," Applied Energy, Elsevier, vol. 298(C).
    14. Bonovas, Markos I. & Anagnostopoulos, Ioannis S., 2020. "Modelling of operation and optimum design of a wave power take-off system with energy storage," Renewable Energy, Elsevier, vol. 147(P1), pages 502-514.
    15. Ropero-Giralda, Pablo & Crespo, Alejandro J.C. & Tagliafierro, Bonaventura & Altomare, Corrado & Domínguez, José M. & Gómez-Gesteira, Moncho & Viccione, Giacomo, 2020. "Efficiency and survivability analysis of a point-absorber wave energy converter using DualSPHysics," Renewable Energy, Elsevier, vol. 162(C), pages 1763-1776.
    16. Piscopo, V. & Benassai, G. & Della Morte, R. & Scamardella, A., 2020. "Towards a unified formulation of time and frequency-domain models for point absorbers with single and double-body configuration," Renewable Energy, Elsevier, vol. 147(P1), pages 1525-1539.
    17. Jin, Siya & Patton, Ron J. & Guo, Bingyong, 2018. "Viscosity effect on a point absorber wave energy converter hydrodynamics validated by simulation and experiment," Renewable Energy, Elsevier, vol. 129(PA), pages 500-512.
    18. Tunde Aderinto & Hua Li, 2018. "Ocean Wave Energy Converters: Status and Challenges," Energies, MDPI, vol. 11(5), pages 1-26, May.
    19. Pablo Ropero-Giralda & Alejandro J. C. Crespo & Ryan G. Coe & Bonaventura Tagliafierro & José M. Domínguez & Giorgio Bacelli & Moncho Gómez-Gesteira, 2021. "Modelling a Heaving Point-Absorber with a Closed-Loop Control System Using the DualSPHysics Code," Energies, MDPI, vol. 14(3), pages 1-20, February.
    20. Yadong Wen & Weijun Wang & Hua Liu & Longbo Mao & Hongju Mi & Wenqiang Wang & Guoping Zhang, 2018. "A Shape Optimization Method of a Specified Point Absorber Wave Energy Converter for the South China Sea," Energies, MDPI, vol. 11(10), pages 1-22, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2018:i:1:p:47-:d:193006. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.