IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v35y2010i2p423-434.html
   My bibliography  Save this article

Time domain prediction of power absorption from ocean waves with latching control

Author

Listed:
  • Kara, Fuat

Abstract

A three-dimensional panel method using Neumann–Kelvin method is presented for the transient wave-body interaction problems in order to absorb maximum power from the sea. The exact initial boundary value problem is linearized about a uniform flow, and recast as an integral equation using the transient free-surface Green function. The hydrodynamics part of the solution including radiation and diffraction problem is solved as impulsive velocity problem. A discrete control of latching is used to increase the bandwidth of the efficiency of the wave energy converters (WEC). When latching control is applied to WEC in the case of off-resonance condition it increases the amplitude of the motion as well as absorbed power. It is assumed that the exciting force is known in the close future and that body is hold in position during the latching time. A heaving hemisphere as a point-absorber WEC is used for the numerical prediction of the different parameters. The calculated hydrodynamics coefficients, response amplitude operator, absorbed power, relative capture width of this device compared with analytical and other published results.

Suggested Citation

  • Kara, Fuat, 2010. "Time domain prediction of power absorption from ocean waves with latching control," Renewable Energy, Elsevier, vol. 35(2), pages 423-434.
  • Handle: RePEc:eee:renene:v:35:y:2010:i:2:p:423-434
    DOI: 10.1016/j.renene.2009.06.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148109002730
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2009.06.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bódai, Tamás & Srinil, Narakorn, 2015. "Performance analysis and optimization of a box-hull wave energy converter concept," Renewable Energy, Elsevier, vol. 81(C), pages 551-565.
    2. Jama, M.A. & Noura, H. & Wahyudie, A. & Assi, A., 2015. "Enhancing the performance of heaving wave energy converters using model-free control approach," Renewable Energy, Elsevier, vol. 83(C), pages 931-941.
    3. Kara, Fuat, 2022. "Effects of a vertical wall on wave power absorption with wave energy converters arrays," Renewable Energy, Elsevier, vol. 196(C), pages 812-823.
    4. Kara, Fuat, 2016. "Time domain prediction of power absorption from ocean waves with wave energy converter arrays," Renewable Energy, Elsevier, vol. 92(C), pages 30-46.
    5. Bucchi, Andrea & Hearn, Grant E., 2013. "Delay or removal of aneurysm formation in the Anaconda wave energy extraction device," Renewable Energy, Elsevier, vol. 55(C), pages 104-119.
    6. Ozkop, Emre & Altas, Ismail H., 2017. "Control, power and electrical components in wave energy conversion systems: A review of the technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 106-115.
    7. Sheng, Wanan & Alcorn, Raymond & Lewis, Anthony, 2015. "On improving wave energy conversion, part II: Development of latching control technologies," Renewable Energy, Elsevier, vol. 75(C), pages 935-944.
    8. Sheng, Wanan & Alcorn, Raymond & Lewis, Anthony, 2015. "On improving wave energy conversion, part I: Optimal and control technologies," Renewable Energy, Elsevier, vol. 75(C), pages 922-934.
    9. Renzi, E. & Abdolali, A. & Bellotti, G. & Dias, F., 2014. "Wave-power absorption from a finite array of oscillating wave surge converters," Renewable Energy, Elsevier, vol. 63(C), pages 55-68.
    10. Burgaç, Alper & Yavuz, Hakan, 2019. "Fuzzy Logic based hybrid type control implementation of a heaving wave energy converter," Energy, Elsevier, vol. 170(C), pages 1202-1214.
    11. Liguo Wang & Jan Isberg, 2015. "Nonlinear Passive Control of a Wave Energy Converter Subject to Constraints in Irregular Waves," Energies, MDPI, vol. 8(7), pages 1-15, June.
    12. Elie Al Shami & Ran Zhang & Xu Wang, 2018. "Point Absorber Wave Energy Harvesters: A Review of Recent Developments," Energies, MDPI, vol. 12(1), pages 1-36, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:35:y:2010:i:2:p:423-434. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.