IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v349y2023ics0306261923010188.html
   My bibliography  Save this article

A multi-physics system integration and modeling method for piezoelectric wave energy harvester

Author

Listed:
  • Chen, Shao-En
  • Pan, Fu-Ting
  • Yang, Ray-Yeng
  • Wu, Chia-Che

Abstract

The multiphysics system integration and modeling method, including hydrodynamic, kinematic, and electromechanical models, were developed. A one-way plucking-driven piezoelectric wave energy harvester (OPD-PWEH) was also developed; it consists of a floating cylindrical buoy, a frequency up-conversion mechanism based on a one-way bearing, and a piezoelectric component based on an array of piezoelectric bulk composite cantilever beams. The one-way bearing converts the repetitive clockwise and counterclockwise rotary motion of the input shaft into a single-directional clockwise rotary motion of the output shaft. The OPD-PWEH was tested in a wave flume under wave amplitudes of 50, 37.5, and 25 mm and wave periods of 1.0, 1.5, and 2.0 s. The experimental results showed that the RMS voltage and average power were 4.47 V and 0.4 mW, respectively, and they were obtained at 50 mm wave amplitude and 1 s wave period.

Suggested Citation

  • Chen, Shao-En & Pan, Fu-Ting & Yang, Ray-Yeng & Wu, Chia-Che, 2023. "A multi-physics system integration and modeling method for piezoelectric wave energy harvester," Applied Energy, Elsevier, vol. 349(C).
  • Handle: RePEc:eee:appene:v:349:y:2023:i:c:s0306261923010188
    DOI: 10.1016/j.apenergy.2023.121654
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923010188
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.121654?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Raju Ahamed & Kristoffer McKee & Ian Howard, 2022. "A Review of the Linear Generator Type of Wave Energy Converters’ Power Take-Off Systems," Sustainability, MDPI, vol. 14(16), pages 1-42, August.
    2. Jin, Siya & Patton, Ron J. & Guo, Bingyong, 2018. "Viscosity effect on a point absorber wave energy converter hydrodynamics validated by simulation and experiment," Renewable Energy, Elsevier, vol. 129(PA), pages 500-512.
    3. Shi, Ge & Tong, Dike & Xia, Yinshui & Jia, Shengyao & Chang, Jian & Li, Qing & Wang, Xiudeng & Xia, Huakang & Ye, Yidie, 2022. "A piezoelectric vibration energy harvester for multi-directional and ultra-low frequency waves with magnetic coupling driven by rotating balls," Applied Energy, Elsevier, vol. 310(C).
    4. Elie Al Shami & Ran Zhang & Xu Wang, 2018. "Point Absorber Wave Energy Harvesters: A Review of Recent Developments," Energies, MDPI, vol. 12(1), pages 1-36, December.
    5. Zhao, Daoli & Zhou, Jie & Tan, Ting & Yan, Zhimiao & Sun, Weipeng & Yin, Junlian & Zhang, Wenming, 2021. "Hydrokinetic piezoelectric energy harvesting by wake induced vibration," Energy, Elsevier, vol. 220(C).
    6. Babarit, A. & Hals, J. & Muliawan, M.J. & Kurniawan, A. & Moan, T. & Krokstad, J., 2012. "Numerical benchmarking study of a selection of wave energy converters," Renewable Energy, Elsevier, vol. 41(C), pages 44-63.
    7. Li, Ye & Yu, Yi-Hsiang, 2012. "A synthesis of numerical methods for modeling wave energy converter-point absorbers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4352-4364.
    8. Silvia Bozzi & Adrià Moreno Miquel & Alessandro Antonini & Giuseppe Passoni & Renata Archetti, 2013. "Modeling of a Point Absorber for Energy Conversion in Italian Seas," Energies, MDPI, vol. 6(6), pages 1-19, June.
    9. Mujtaba, A. & Latif, U. & Uddin, E. & Younis, M.Y. & Sajid, M. & Ali, Z. & Abdelkefi, A., 2021. "Hydrodynamic energy harvesting analysis of two piezoelectric tandem flags under influence of upstream body’s wakes," Applied Energy, Elsevier, vol. 282(PA).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elie Al Shami & Ran Zhang & Xu Wang, 2018. "Point Absorber Wave Energy Harvesters: A Review of Recent Developments," Energies, MDPI, vol. 12(1), pages 1-36, December.
    2. Guo, Bingyong & Ringwood, John V., 2021. "Geometric optimisation of wave energy conversion devices: A survey," Applied Energy, Elsevier, vol. 297(C).
    3. Pablo Ropero-Giralda & Alejandro J. C. Crespo & Ryan G. Coe & Bonaventura Tagliafierro & José M. Domínguez & Giorgio Bacelli & Moncho Gómez-Gesteira, 2021. "Modelling a Heaving Point-Absorber with a Closed-Loop Control System Using the DualSPHysics Code," Energies, MDPI, vol. 14(3), pages 1-20, February.
    4. Rahimi, Amir & Rezaei, Saeed & Parvizian, Jamshid & Mansourzadeh, Shahriar & Lund, Jorrid & Hssini, Radhouane & Düster, Alexander, 2022. "Numerical and experimental study of the hydrodynamic coefficients and power absorption of a two-body point absorber wave energy converter," Renewable Energy, Elsevier, vol. 201(P1), pages 181-193.
    5. Reza Jafari & Pedram Asef & Mohammad Ardebili & Mohammad Mahdi Derakhshani, 2022. "Linear Permanent Magnet Vernier Generators for Wave Energy Applications: Analysis, Challenges, and Opportunities," Sustainability, MDPI, vol. 14(17), pages 1-35, September.
    6. Bertram, D.V. & Tarighaleslami, A.H. & Walmsley, M.R.W. & Atkins, M.J. & Glasgow, G.D.E., 2020. "A systematic approach for selecting suitable wave energy converters for potential wave energy farm sites," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    7. López, M. & Taveira-Pinto, F. & Rosa-Santos, P., 2017. "Influence of the power take-off characteristics on the performance of CECO wave energy converter," Energy, Elsevier, vol. 120(C), pages 686-697.
    8. Gao, Qiang & Yuan, Rui & Ertugrul, Nesimi & Ding, Boyin & Hayward, Jennifer A. & Li, Ye, 2023. "Analysis of energy variability and costs for offshore wind and hybrid power unit with equivalent energy storage system," Applied Energy, Elsevier, vol. 342(C).
    9. Cheng, Yong & Ji, Chunyan & Zhai, Gangjun, 2019. "Fully nonlinear analysis incorporating viscous effects for hydrodynamics of an oscillating wave surge converter with nonlinear power take-off system," Energy, Elsevier, vol. 179(C), pages 1067-1081.
    10. Ma, Yong & Zhang, Aiming & Yang, Lele & Li, Hao & Zhai, Zhenfeng & Zhou, Heng, 2020. "Motion simulation and performance analysis of two-body floating point absorber wave energy converter," Renewable Energy, Elsevier, vol. 157(C), pages 353-367.
    11. Liu, Yao & Mizutani, Norimi & Cho, Yong-Hwan & Nakamura, Tomoaki, 2022. "Performance enhancement of a bottom-hinged oscillating wave surge converter via resonant adjustment," Renewable Energy, Elsevier, vol. 201(P1), pages 624-635.
    12. Al Shami, Elie & Wang, Zhun & Wang, Xu, 2021. "Non-linear dynamic simulations of two-body wave energy converters via identification of viscous drag coefficients of different shapes of the submerged body based on numerical wave tank CFD simulation," Renewable Energy, Elsevier, vol. 179(C), pages 983-997.
    13. Cai, Qinlin & Zhu, Songye, 2021. "Applying double-mass pendulum oscillator with tunable ultra-low frequency in wave energy converters," Applied Energy, Elsevier, vol. 298(C).
    14. George Lavidas & Vengatesan Venugopal, 2018. "Energy Production Benefits by Wind and Wave Energies for the Autonomous System of Crete," Energies, MDPI, vol. 11(10), pages 1-14, October.
    15. Ropero-Giralda, Pablo & Crespo, Alejandro J.C. & Tagliafierro, Bonaventura & Altomare, Corrado & Domínguez, José M. & Gómez-Gesteira, Moncho & Viccione, Giacomo, 2020. "Efficiency and survivability analysis of a point-absorber wave energy converter using DualSPHysics," Renewable Energy, Elsevier, vol. 162(C), pages 1763-1776.
    16. Lavidas, George & Venugopal, Vengatesan, 2017. "A 35 year high-resolution wave atlas for nearshore energy production and economics at the Aegean Sea," Renewable Energy, Elsevier, vol. 103(C), pages 401-417.
    17. Zang, Zhipeng & Zhang, Qinghe & Qi, Yue & Fu, Xiaoying, 2018. "Hydrodynamic responses and efficiency analyses of a heaving-buoy wave energy converter with PTO damping in regular and irregular waves," Renewable Energy, Elsevier, vol. 116(PA), pages 527-542.
    18. Kim, Ki Jong & Kim, Junyoung & Kim, Daegyoum, 2023. "Slosh-induced piezoelectric energy harvesting in a liquid tank," Renewable Energy, Elsevier, vol. 206(C), pages 409-417.
    19. Yu, Hui-Feng & Zhang, Yong-Liang & Zheng, Si-Ming, 2016. "Numerical study on the performance of a wave energy converter with three hinged bodies," Renewable Energy, Elsevier, vol. 99(C), pages 1276-1286.
    20. Adrian De Andres & Jéromine Maillet & Jørgen Hals Todalshaug & Patrik Möller & David Bould & Henry Jeffrey, 2016. "Techno-Economic Related Metrics for a Wave Energy Converters Feasibility Assessment," Sustainability, MDPI, vol. 8(11), pages 1-19, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:349:y:2023:i:c:s0306261923010188. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.