IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v217y2023ics0960148123010510.html
   My bibliography  Save this article

Decomposition and prediction of initial uniform bi-directional water waves using an array of wave-rider buoys

Author

Listed:
  • Iida, Takahito

Abstract

Prediction of incident waves to Wave Energy Converters (WEC) is essential to maximize the energy absorption by controlling the WEC. Nevertheless, little work has been done on the deterministic prediction of bi-directional waves whose wave directions of components are 180∘ opposite. To decompose and predict such bi-directional waves, an array of three wave-rider buoys are considered. Buoys on both sides are used for decomposing bi-directional waves into progressive and regressive wave components, and the surface elevation of the middle buoy is predicted by these decomposed waves. The deterministic wave prediction is based on the impulse response function, and a cosine-filtered impulse response function is proposed to reduce an error due to the truncation of the infinite length of the function. Predictions of initial uniform bi-directional waves are shown to demonstrate the performance of the impulse response function method to time-series prediction. Both numerical and experimental comparisons are carried out to validate the proposed methods. The experimental validation revealed that the proposed bi-directional prediction method can predict such waves with at most 5% Mean Absolute Error within this experiment.

Suggested Citation

  • Iida, Takahito, 2023. "Decomposition and prediction of initial uniform bi-directional water waves using an array of wave-rider buoys," Renewable Energy, Elsevier, vol. 217(C).
  • Handle: RePEc:eee:renene:v:217:y:2023:i:c:s0960148123010510
    DOI: 10.1016/j.renene.2023.119137
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123010510
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119137?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Murai, Motohiko & Li, Qiao & Funada, Junki, 2021. "Study on power generation of single Point Absorber Wave Energy Converters (PA-WECs) and arrays of PA-WECs," Renewable Energy, Elsevier, vol. 164(C), pages 1121-1132.
    2. Changhai Liu & Qingjun Yang & Gang Bao, 2018. "State-Space Approximation of Convolution Term in Time Domain Analysis of a Raft-Type Wave Energy Converter," Energies, MDPI, vol. 11(1), pages 1-22, January.
    3. Hong, Yue & Waters, Rafael & Boström, Cecilia & Eriksson, Mikael & Engström, Jens & Leijon, Mats, 2014. "Review on electrical control strategies for wave energy converting systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 329-342.
    4. Elie Al Shami & Ran Zhang & Xu Wang, 2018. "Point Absorber Wave Energy Harvesters: A Review of Recent Developments," Energies, MDPI, vol. 12(1), pages 1-36, December.
    5. Lehmann, Marcus & Karimpour, Farid & Goudey, Clifford A. & Jacobson, Paul T. & Alam, Mohammad-Reza, 2017. "Ocean wave energy in the United States: Current status and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1300-1313.
    6. Zhong, Qian & Yeung, Ronald W., 2019. "Wave-body interactions among energy absorbers in a wave farm," Applied Energy, Elsevier, vol. 233, pages 1051-1064.
    7. Xuhui, Yue & Qijuan, Chen & Zenghui, Wang & Dazhou, Geng & Donglin, Yan & Wen, Jiang & Weiyu, Wang, 2019. "A novel nonlinear state space model for the hydraulic power take-off of a wave energy converter," Energy, Elsevier, vol. 180(C), pages 465-479.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Zhenquan & Qin, Jian & Zhang, Yuchen & Huang, Shuting & Liu, Yanjun & Xue, Gang, 2023. "Cooperative model predictive control for Wave Energy Converter arrays," Renewable Energy, Elsevier, vol. 219(P1).
    2. Han, Meng & Cao, Feifei & Shi, Hongda & Zhu, Kai & Dong, Xiaochen & Li, Demin, 2023. "Layout optimisation of the two-body heaving wave energy converter array," Renewable Energy, Elsevier, vol. 205(C), pages 410-431.
    3. Liu, Changhai & Hu, Min & Gao, Wenzhi & Chen, Jian & Zeng, Yishan & Wei, Daozhu & Yang, Qingjun & Bao, Gang, 2021. "A high-precise model for the hydraulic power take-off of a raft-type wave energy converter," Energy, Elsevier, vol. 215(PA).
    4. Gustavo Navarro & Marcos Blanco & Jorge Torres & Jorge Nájera & Álvaro Santiago & Miguel Santos-Herran & Dionisio Ramírez & Marcos Lafoz, 2021. "Dimensioning Methodology of an Energy Storage System Based on Supercapacitors for Grid Code Compliance of a Wave Power Plant," Energies, MDPI, vol. 14(4), pages 1-20, February.
    5. Liu, Hua & Wang, Weijun & Wen, Yadong & Mao, Longbo & Wang, Wenqiang & Mi, Hongju, 2019. "A novel axial flow self-rectifying turbine for use in wave energy converters," Energy, Elsevier, vol. 189(C).
    6. Bódai, Tamás & Srinil, Narakorn, 2015. "Performance analysis and optimization of a box-hull wave energy converter concept," Renewable Energy, Elsevier, vol. 81(C), pages 551-565.
    7. Yao, Ganzhou & Luo, Zirong & Lu, Zhongyue & Wang, Mangkuan & Shang, Jianzhong & Guerrerob, Josep M., 2023. "Unlocking the potential of wave energy conversion: A comprehensive evaluation of advanced maximum power point tracking techniques and hybrid strategies for sustainable energy harvesting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    8. Tunde Aderinto & Hua Li, 2020. "Effect of Spatial and Temporal Resolution Data on Design and Power Capture of a Heaving Point Absorber," Sustainability, MDPI, vol. 12(22), pages 1-17, November.
    9. Xiaohui Zeng & Qi Wang & Yuanshun Kang & Fajun Yu, 2022. "A Novel Type of Wave Energy Converter with Five Degrees of Freedom and Preliminary Investigations on Power-Generating Capacity," Energies, MDPI, vol. 15(9), pages 1-20, April.
    10. Dezhi Ning & Zechen He & Ying Gou & Malin Göteman, 2019. "Near Trapping Effect on Wave-Power Extraction by Linear Periodic Arrays," Sustainability, MDPI, vol. 12(1), pages 1-17, December.
    11. Brenda Rojas-Delgado & Monica Alonso & Hortensia Amaris & Juan de Santiago, 2019. "Wave Power Output Smoothing through the Use of a High-Speed Kinetic Buffer," Energies, MDPI, vol. 12(11), pages 1-28, June.
    12. Natalia Gonzalez & Paul Serna-Torre & Pedro A. Sánchez-Pérez & Ryan Davidson & Bryan Murray & Martin Staadecker & Julia Szinai & Rachel Wei & Daniel M. Kammen & Deborah A. Sunter & Patricia Hidalgo-Go, 2024. "Offshore wind and wave energy can reduce total installed capacity required in zero-emissions grids," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    13. Osorio, Julian D. & Panwar, Mayank & Rivera-Alvarez, Alejandro & Chryssostomidis, Chrys & Hovsapian, Rob & Mohanpurkar, Manish & Chanda, Sayonsom & Williams, Herbert, 2020. "Enabling thermal efficiency improvement and waste heat recovery using liquid air harnessed from offshore renewable energy sources," Applied Energy, Elsevier, vol. 275(C).
    14. Rosa-Santos, Paulo & Taveira-Pinto, Francisco & Rodríguez, Claudio A. & Ramos, Victor & López, Mario, 2019. "The CECO wave energy converter: Recent developments," Renewable Energy, Elsevier, vol. 139(C), pages 368-384.
    15. Reza Jafari & Pedram Asef & Mohammad Ardebili & Mohammad Mahdi Derakhshani, 2022. "Linear Permanent Magnet Vernier Generators for Wave Energy Applications: Analysis, Challenges, and Opportunities," Sustainability, MDPI, vol. 14(17), pages 1-35, September.
    16. Bertram, D.V. & Tarighaleslami, A.H. & Walmsley, M.R.W. & Atkins, M.J. & Glasgow, G.D.E., 2020. "A systematic approach for selecting suitable wave energy converters for potential wave energy farm sites," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    17. deCastro, M. & Rusu, L. & Arguilé-Pérez, B. & Ribeiro, A. & Costoya, X. & Carvalho, D. & Gómez-Gesteira, M., 2024. "Different approaches to analyze the impact of future climate change on the exploitation of wave energy," Renewable Energy, Elsevier, vol. 220(C).
    18. Santhakumar, Srinivasan & Meerman, Hans & Faaij, André, 2024. "Future costs of key emerging offshore renewable energy technologies," Renewable Energy, Elsevier, vol. 222(C).
    19. Martić, Ivana & Degiuli, Nastia & Grlj, Carlo Giorgio, 2024. "Scaling of wave energy converters for optimum performance in the Adriatic Sea," Energy, Elsevier, vol. 294(C).
    20. Gomes, Rui P.F. & Gato, Luís M.C. & Henriques, João C.C. & Portillo, Juan C.C. & Howey, Ben D. & Collins, Keri M. & Hann, Martyn R. & Greaves, Deborah M., 2020. "Compact floating wave energy converters arrays: Mooring loads and survivability through scale physical modelling," Applied Energy, Elsevier, vol. 280(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:217:y:2023:i:c:s0960148123010510. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.