IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v48y2012icp133-145.html
   My bibliography  Save this article

Analysis and optimization of a tethered wave energy converter in irregular waves

Author

Listed:
  • Bachynski, Erin E.
  • Young, Yin Lu
  • Yeung, Ronald W.

Abstract

An understanding of the fundamental system dynamics of wave energy converters (WECs) is required to safely and reliably benefit from the available wave energy resource to produce electricity. The effects of the geometry, mooring system, and mass distribution on the idealized power takeoff of a tethered wave energy absorber in irregular waves are examined. The effects on coupled pitch and sway motions are also considered using a linear frequency-domain method, based on potential flow theory, to obtain the hydrodynamic coefficients. Superposition is used to calculate the response in irregular waves. The objectives of this paper are to examine the characteristic system response of WECs, and to demonstrate the use of an efficient potential-based method for the optimization of a WEC to maximize the annual power takeoff while ensuring system safety at a given site. The analyses suggest that the idealized power takeoff damping increases with the size of the WEC, with the intensity of motion limited. A relatively light mooring system has little effect on the power takeoff, but it introduces a low-frequency coupled pitch-surge resonance that can cause system failure if subject to long-period swells. To mitigate the risk of coupled surge-pitch related failures, a low center of gravity and a low radius of gyration of the floater about the center of floatation are recommended. The results also demonstrate the importance of tuning the system for the site-specific probabilistic wave climate in order to maximize total energy capture and avoid potential failures.

Suggested Citation

  • Bachynski, Erin E. & Young, Yin Lu & Yeung, Ronald W., 2012. "Analysis and optimization of a tethered wave energy converter in irregular waves," Renewable Energy, Elsevier, vol. 48(C), pages 133-145.
  • Handle: RePEc:eee:renene:v:48:y:2012:i:c:p:133-145
    DOI: 10.1016/j.renene.2012.04.044
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148112002856
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2012.04.044?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Agamloh, Emmanuel B. & Wallace, Alan K. & von Jouanne, Annette, 2008. "Application of fluid–structure interaction simulation of an ocean wave energy extraction device," Renewable Energy, Elsevier, vol. 33(4), pages 748-757.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Raju Ahamed & Kristoffer McKee & Ian Howard, 2022. "A Review of the Linear Generator Type of Wave Energy Converters’ Power Take-Off Systems," Sustainability, MDPI, vol. 14(16), pages 1-42, August.
    2. Gao, Hong & Xiao, Jie, 2021. "Effects of power take-off parameters and harvester shape on wave energy extraction and output of a hydraulic conversion system," Applied Energy, Elsevier, vol. 299(C).
    3. Tunde Aderinto & Hua Li, 2019. "Review on Power Performance and Efficiency of Wave Energy Converters," Energies, MDPI, vol. 12(22), pages 1-24, November.
    4. Zhang, Xiantao & Tian, XinLiang & Xiao, Longfei & Li, Xin & Lu, Wenyue, 2019. "Mechanism and sensitivity for broadband energy harvesting of an adaptive bistable point absorber wave energy converter," Energy, Elsevier, vol. 188(C).
    5. Xu, Sheng & Wang, Shan & Guedes Soares, C., 2019. "Review of mooring design for floating wave energy converters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 595-621.
    6. Zhang, Xiantao & Tian, Xinliang & Xiao, Longfei & Li, Xin & Chen, Lifen, 2018. "Application of an adaptive bistable power capture mechanism to a point absorber wave energy converter," Applied Energy, Elsevier, vol. 228(C), pages 450-467.
    7. Gao, Hong & Yu, Yang, 2018. "The dynamics and power absorption of cone-cylinder wave energy converters with three degree of freedom in irregular waves," Energy, Elsevier, vol. 143(C), pages 833-845.
    8. Ren, Junqing & Jin, Peng & Liu, Yingyi & Zang, Jun, 2021. "Wave attenuation and focusing by a parabolic arc pontoon breakwater," Energy, Elsevier, vol. 217(C).
    9. Vincenzo Piscopo & Guido Benassai & Renata Della Morte & Antonio Scamardella, 2018. "Cost-Based Design and Selection of Point Absorber Devices for the Mediterranean Sea," Energies, MDPI, vol. 11(4), pages 1-23, April.
    10. Chen, Zhongfei & Zhou, Binzhen & Zhang, Liang & Li, Can & Zang, Jun & Zheng, Xiongbo & Xu, Jianan & Zhang, Wanchao, 2018. "Experimental and numerical study on a novel dual-resonance wave energy converter with a built-in power take-off system," Energy, Elsevier, vol. 165(PA), pages 1008-1020.
    11. Sergiienko, N.Y. & Cazzolato, B.S. & Ding, B. & Arjomandi, M., 2016. "An optimal arrangement of mooring lines for the three-tether submerged point-absorbing wave energy converter," Renewable Energy, Elsevier, vol. 93(C), pages 27-37.
    12. Gao, Hong & Xiao, Jie & Liang, Ruizhi, 2024. "Capture mechanism of a multi-dimensional wave energy converter with a strong coupling parallel drive," Applied Energy, Elsevier, vol. 361(C).
    13. Zang, Zhipeng & Zhang, Qinghe & Qi, Yue & Fu, Xiaoying, 2018. "Hydrodynamic responses and efficiency analyses of a heaving-buoy wave energy converter with PTO damping in regular and irregular waves," Renewable Energy, Elsevier, vol. 116(PA), pages 527-542.
    14. Zhao, Yunpeng & Fan, Zhongqi & Bi, Chunwei & Wang, Hao & Mi, Jianchun & Xu, Minyi, 2022. "On hydrodynamic and electrical characteristics of a self-powered triboelectric nanogenerator based buoy under water ripples," Applied Energy, Elsevier, vol. 308(C).
    15. Piscopo, V. & Benassai, G. & Della Morte, R. & Scamardella, A., 2020. "Towards a unified formulation of time and frequency-domain models for point absorbers with single and double-body configuration," Renewable Energy, Elsevier, vol. 147(P1), pages 1525-1539.
    16. Josh Davidson & John V. Ringwood, 2017. "Mathematical Modelling of Mooring Systems for Wave Energy Converters—A Review," Energies, MDPI, vol. 10(5), pages 1-46, May.
    17. Chen, Zhongfei & Zhang, Liang & Yeung, Ronald W., 2019. "Analysis and optimization of a Dual Mass-Spring-Damper (DMSD) wave-energy convertor with variable resonance capability," Renewable Energy, Elsevier, vol. 131(C), pages 1060-1072.
    18. Fadaeenejad, M. & Shamsipour, R. & Rokni, S.D. & Gomes, C., 2014. "New approaches in harnessing wave energy: With special attention to small islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 345-354.
    19. Elie Al Shami & Ran Zhang & Xu Wang, 2018. "Point Absorber Wave Energy Harvesters: A Review of Recent Developments," Energies, MDPI, vol. 12(1), pages 1-36, December.
    20. Guo, Bingyong & Ringwood, John V., 2021. "Geometric optimisation of wave energy conversion devices: A survey," Applied Energy, Elsevier, vol. 297(C).
    21. Tunde Aderinto & Hua Li, 2020. "Conceptual Design and Simulation of a Self-Adjustable Heaving Point Absorber Based Wave Energy Converter," Energies, MDPI, vol. 13(8), pages 1-15, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tan, Ting & Yan, Zhimiao & Zou, Hongxiang & Ma, Kejing & Liu, Fengrui & Zhao, Linchuan & Peng, Zhike & Zhang, Wenming, 2019. "Renewable energy harvesting and absorbing via multi-scale metamaterial systems for Internet of things," Applied Energy, Elsevier, vol. 254(C).
    2. Stratigaki, Vasiliki & Troch, Peter & Forehand, David, 2019. "A fundamental coupling methodology for modeling near-field and far-field wave effects of floating structures and wave energy devices," Renewable Energy, Elsevier, vol. 143(C), pages 1608-1627.
    3. Jinming Wu & Yingxue Yao & Dongke Sun & Zhonghua Ni & Malin Göteman, 2019. "Numerical and Experimental Study of the Solo Duck Wave Energy Converter," Energies, MDPI, vol. 12(10), pages 1-19, May.
    4. Tim Verbrugghe & Vicky Stratigaki & Peter Troch & Raphael Rabussier & Andreas Kortenhaus, 2017. "A Comparison Study of a Generic Coupling Methodology for Modeling Wake Effects of Wave Energy Converter Arrays," Energies, MDPI, vol. 10(11), pages 1-25, October.
    5. Doukas, Haris & Karakosta, Charikleia & Psarras, John, 2009. "RES technology transfer within the new climate regime: A "helicopter" view under the CDM," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 1138-1143, June.
    6. Alexandros Flamos, 2010. "The clean development mechanism—catalyst for wide spread deployment of renewable energy technologies? or misnomer?," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 12(1), pages 89-102, February.
    7. Ghasemi, Amirmahdi & Anbarsooz, Morteza & Malvandi, Amir & Ghasemi, Amirhossein & Hedayati, Faraz, 2017. "A nonlinear computational modeling of wave energy converters: A tethered point absorber and a bottom-hinged flap device," Renewable Energy, Elsevier, vol. 103(C), pages 774-785.
    8. Brecht Devolder & Vasiliki Stratigaki & Peter Troch & Pieter Rauwoens, 2018. "CFD Simulations of Floating Point Absorber Wave Energy Converter Arrays Subjected to Regular Waves," Energies, MDPI, vol. 11(3), pages 1-23, March.
    9. Bharath, Aidan & Nader, Jean-Roch & Penesis, Irene & Macfarlane, Gregor, 2018. "Nonlinear hydrodynamic effects on a generic spherical wave energy converter," Renewable Energy, Elsevier, vol. 118(C), pages 56-70.
    10. Tran, Thanh Toan & Kim, Dong-Hyun, 2016. "A CFD study into the influence of unsteady aerodynamic interference on wind turbine surge motion," Renewable Energy, Elsevier, vol. 90(C), pages 204-228.
    11. He, Guanghua & Luan, Zhengxiao & Jin, Ruijia & Zhang, Wei & Wang, Wei & Zhang, Zhigang & Jing, Penglin & Liu, Pengfei, 2022. "Numerical and experimental study on absorber-type wave energy converters concentrically arranged on an octagonal platform," Renewable Energy, Elsevier, vol. 188(C), pages 504-523.
    12. Li, Ye & Yu, Yi-Hsiang, 2012. "A synthesis of numerical methods for modeling wave energy converter-point absorbers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4352-4364.
    13. Shi, Hongda & Cao, Feifei & Liu, Zhen & Qu, Na, 2016. "Theoretical study on the power take-off estimation of heaving buoy wave energy converter," Renewable Energy, Elsevier, vol. 86(C), pages 441-448.
    14. Elie Al Shami & Ran Zhang & Xu Wang, 2018. "Point Absorber Wave Energy Harvesters: A Review of Recent Developments," Energies, MDPI, vol. 12(1), pages 1-36, December.
    15. Ransley, E.J. & Greaves, D.M. & Raby, A. & Simmonds, D. & Jakobsen, M.M. & Kramer, M., 2017. "RANS-VOF modelling of the Wavestar point absorber," Renewable Energy, Elsevier, vol. 109(C), pages 49-65.
    16. Windt, Christian & Davidson, Josh & Ringwood, John V., 2018. "High-fidelity numerical modelling of ocean wave energy systems: A review of computational fluid dynamics-based numerical wave tanks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 610-630.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:48:y:2012:i:c:p:133-145. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.