IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v162y2020icp1763-1776.html
   My bibliography  Save this article

Efficiency and survivability analysis of a point-absorber wave energy converter using DualSPHysics

Author

Listed:
  • Ropero-Giralda, Pablo
  • Crespo, Alejandro J.C.
  • Tagliafierro, Bonaventura
  • Altomare, Corrado
  • Domínguez, José M.
  • Gómez-Gesteira, Moncho
  • Viccione, Giacomo

Abstract

Smoothed Particle Hydrodynamics (SPH) method is used here to simulate a heaving point-absorber with a Power Take-Off system (PTO). The SPH-based code DualSPHysics is first validated with experimental data of regular waves interacting with the point-absorber. Comparison between the numerical and experimental heave displacement and velocity of the device show a good agreement for a given regular wave condition and different configurations of the PTO system. The validated numerical tool is then employed to investigate the efficiency of the proposed system. The efficiency, which is defined here as the ratio between the power absorbed by the point-absorber and its theoretical maximum, is obtained for different wave conditions and several arrangements of the PTO. Finally, the effects of highly energetic sea states on the buoy are examined through alternative configurations of the initial system. A survivability study is performed by computing the horizontal and vertical forces exerted by focused waves on the wave energy converter (WEC). The yield criterion is used to determine that submerging the heaving buoy at a certain depth is the most effective strategy to reduce the loads acting on the WEC and its structure, while keeping the WEC floating at still water level is the worst-case scenario.

Suggested Citation

  • Ropero-Giralda, Pablo & Crespo, Alejandro J.C. & Tagliafierro, Bonaventura & Altomare, Corrado & Domínguez, José M. & Gómez-Gesteira, Moncho & Viccione, Giacomo, 2020. "Efficiency and survivability analysis of a point-absorber wave energy converter using DualSPHysics," Renewable Energy, Elsevier, vol. 162(C), pages 1763-1776.
  • Handle: RePEc:eee:renene:v:162:y:2020:i:c:p:1763-1776
    DOI: 10.1016/j.renene.2020.10.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120315780
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.10.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zabala, I. & Henriques, J.C.C. & Blanco, J.M. & Gomez, A. & Gato, L.M.C. & Bidaguren, I. & Falcão, A.F.O. & Amezaga, A. & Gomes, R.P.F., 2019. "Wave-induced real-fluid effects in marine energy converters: Review and application to OWC devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 535-549.
    2. Penalba, Markel & Giorgi, Giussepe & Ringwood, John V., 2017. "Mathematical modelling of wave energy converters: A review of nonlinear approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1188-1207.
    3. Brito, M. & Canelas, R.B. & García-Feal, O. & Domínguez, J.M. & Crespo, A.J.C. & Ferreira, R.M.L. & Neves, M.G. & Teixeira, L., 2020. "A numerical tool for modelling oscillating wave surge converter with nonlinear mechanical constraints," Renewable Energy, Elsevier, vol. 146(C), pages 2024-2043.
    4. Zang, Zhipeng & Zhang, Qinghe & Qi, Yue & Fu, Xiaoying, 2018. "Hydrodynamic responses and efficiency analyses of a heaving-buoy wave energy converter with PTO damping in regular and irregular waves," Renewable Energy, Elsevier, vol. 116(PA), pages 527-542.
    5. Tim Verbrugghe & Vasiliki Stratigaki & Corrado Altomare & J. M. Domínguez & Peter Troch & Andreas Kortenhaus, 2019. "Implementation of Open Boundaries within a Two-Way Coupled SPH Model to Simulate Nonlinear Wave–Structure Interactions," Energies, MDPI, vol. 12(4), pages 1-23, February.
    6. Jin, Siya & Patton, Ron J. & Guo, Bingyong, 2018. "Viscosity effect on a point absorber wave energy converter hydrodynamics validated by simulation and experiment," Renewable Energy, Elsevier, vol. 129(PA), pages 500-512.
    7. Li, Ye & Yu, Yi-Hsiang, 2012. "A synthesis of numerical methods for modeling wave energy converter-point absorbers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4352-4364.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pablo Ropero-Giralda & Alejandro J. C. Crespo & Ryan G. Coe & Bonaventura Tagliafierro & José M. Domínguez & Giorgio Bacelli & Moncho Gómez-Gesteira, 2021. "Modelling a Heaving Point-Absorber with a Closed-Loop Control System Using the DualSPHysics Code," Energies, MDPI, vol. 14(3), pages 1-20, February.
    2. Amini, Erfan & Mehdipour, Hossein & Faraggiana, Emilio & Golbaz, Danial & Mozaffari, Sevda & Bracco, Giovanni & Neshat, Mehdi, 2022. "Optimization of hydraulic power take-off system settings for point absorber wave energy converter," Renewable Energy, Elsevier, vol. 194(C), pages 938-954.
    3. Bonaventura Tagliafierro & Madjid Karimirad & Iván Martínez-Estévez & José M. Domínguez & Giacomo Viccione & Alejandro J. C. Crespo, 2022. "Numerical Assessment of a Tension-Leg Platform Wind Turbine in Intermediate Water Using the Smoothed Particle Hydrodynamics Method," Energies, MDPI, vol. 15(11), pages 1-23, May.
    4. Tagliafierro, Bonaventura & Martínez-Estévez, Iván & Domínguez, José M. & Crespo, Alejandro J.C. & Göteman, Malin & Engström, Jens & Gómez-Gesteira, Moncho, 2022. "A numerical study of a taut-moored point-absorber wave energy converter with a linear power take-off system under extreme wave conditions," Applied Energy, Elsevier, vol. 311(C).
    5. Quartier, Nicolas & Vervaet, Timothy & Fernandez, Gael Verao & Domínguez, José M. & Crespo, Alejandro J.C. & Stratigaki, Vasiliki & Troch, Peter, 2024. "High-fidelity numerical modelling of a two-WEC array with accurate implementation of the PTO system and control strategy using DualSPHysics," Energy, Elsevier, vol. 296(C).
    6. Zhigang Liu & Wei Huang & Shi Liu & Xiaomei Wu & Chun Sing Lai & Yi Yang, 2023. "An Improved Hydraulic Energy Storage Wave Power-Generation System Based on QPR Control," Energies, MDPI, vol. 16(2), pages 1-18, January.
    7. Ji Woo Nam & Yong Jun Sung & Seong Wook Cho, 2021. "Effective Mooring Rope Tension in Mechanical and Hydraulic Power Take-Off of Wave Energy Converter," Sustainability, MDPI, vol. 13(17), pages 1-20, August.
    8. Manawadu, N.H.D.S. & Nissanka, I.D. & Karunasena, H.C.P., 2024. "SPH-based numerical modelling and performance analysis of a heaving point absorber type wave energy converter with a novel buoy geometry," Renewable Energy, Elsevier, vol. 228(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pablo Ropero-Giralda & Alejandro J. C. Crespo & Ryan G. Coe & Bonaventura Tagliafierro & José M. Domínguez & Giorgio Bacelli & Moncho Gómez-Gesteira, 2021. "Modelling a Heaving Point-Absorber with a Closed-Loop Control System Using the DualSPHysics Code," Energies, MDPI, vol. 14(3), pages 1-20, February.
    2. Guo, Bingyong & Ringwood, John V., 2021. "Geometric optimisation of wave energy conversion devices: A survey," Applied Energy, Elsevier, vol. 297(C).
    3. Zhou, Yu & Ning, Dezhi & Liang, Dongfang & Cai, Shuqun, 2021. "Nonlinear hydrodynamic analysis of an offshore oscillating water column wave energy converter," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    4. Quartier, Nicolas & Vervaet, Timothy & Fernandez, Gael Verao & Domínguez, José M. & Crespo, Alejandro J.C. & Stratigaki, Vasiliki & Troch, Peter, 2024. "High-fidelity numerical modelling of a two-WEC array with accurate implementation of the PTO system and control strategy using DualSPHysics," Energy, Elsevier, vol. 296(C).
    5. Elie Al Shami & Ran Zhang & Xu Wang, 2018. "Point Absorber Wave Energy Harvesters: A Review of Recent Developments," Energies, MDPI, vol. 12(1), pages 1-36, December.
    6. Tagliafierro, Bonaventura & Martínez-Estévez, Iván & Domínguez, José M. & Crespo, Alejandro J.C. & Göteman, Malin & Engström, Jens & Gómez-Gesteira, Moncho, 2022. "A numerical study of a taut-moored point-absorber wave energy converter with a linear power take-off system under extreme wave conditions," Applied Energy, Elsevier, vol. 311(C).
    7. Jin, Siya & Patton, Ron J. & Guo, Bingyong, 2018. "Viscosity effect on a point absorber wave energy converter hydrodynamics validated by simulation and experiment," Renewable Energy, Elsevier, vol. 129(PA), pages 500-512.
    8. Orphin, Jarrah & Nader, Jean-Roch & Penesis, Irene, 2021. "Uncertainty analysis of a WEC model test experiment," Renewable Energy, Elsevier, vol. 168(C), pages 216-233.
    9. Jin, Siya & Patton, Ron J. & Guo, Bingyong, 2019. "Enhancement of wave energy absorption efficiency via geometry and power take-off damping tuning," Energy, Elsevier, vol. 169(C), pages 819-832.
    10. Rodríguez, Claudio A. & Rosa-Santos, Paulo & Taveira-Pinto, Francisco, 2019. "Assessment of damping coefficients of power take-off systems of wave energy converters: A hybrid approach," Energy, Elsevier, vol. 169(C), pages 1022-1038.
    11. Fankai Kong & Hengxu Liu & Weiming Su & Jingtao Ao & Hailong Chen & Fengmei Jing, 2019. "Analytical and Numerical Analysis of the Dynamics of a Moonpool Platform–Wave Energy Buoy (MP–WEB)," Energies, MDPI, vol. 12(21), pages 1-24, October.
    12. Li, L. & Gao, Y. & Ning, D.Z. & Yuan, Z.M., 2021. "Development of a constraint non-causal wave energy control algorithm based on artificial intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    13. Mohd Afifi Jusoh & Mohd Zamri Ibrahim & Muhamad Zalani Daud & Aliashim Albani & Zulkifli Mohd Yusop, 2019. "Hydraulic Power Take-Off Concepts for Wave Energy Conversion System: A Review," Energies, MDPI, vol. 12(23), pages 1-23, November.
    14. Ji Woo Nam & Yong Jun Sung & Seong Wook Cho, 2021. "Effective Mooring Rope Tension in Mechanical and Hydraulic Power Take-Off of Wave Energy Converter," Sustainability, MDPI, vol. 13(17), pages 1-20, August.
    15. Moussavi, S. & Barutha, P. & Dvorak, B., 2023. "Environmental life cycle assessment of a novel offshore wind energy design project: A United States based case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    16. Ryan G. Coe & Yi-Hsiang Yu & Jennifer Van Rij, 2017. "A Survey of WEC Reliability, Survival and Design Practices," Energies, MDPI, vol. 11(1), pages 1-19, December.
    17. Liu, Yao & Mizutani, Norimi & Cho, Yong-Hwan & Nakamura, Tomoaki, 2022. "Performance enhancement of a bottom-hinged oscillating wave surge converter via resonant adjustment," Renewable Energy, Elsevier, vol. 201(P1), pages 624-635.
    18. Oikonomou, Charikleia L.G. & Gomes, Rui P.F. & Gato, Luís M.C., 2021. "Unveiling the potential of using a spar-buoy oscillating-water-column wave energy converter for low-power stand-alone applications," Applied Energy, Elsevier, vol. 292(C).
    19. Manawadu, N.H.D.S. & Nissanka, I.D. & Karunasena, H.C.P., 2024. "SPH-based numerical modelling and performance analysis of a heaving point absorber type wave energy converter with a novel buoy geometry," Renewable Energy, Elsevier, vol. 228(C).
    20. Benites-Munoz, Daniela & Huang, Luofeng & Thomas, Giles, 2024. "Optimal array arrangement of oscillating wave surge converters: An analysis based on three devices," Renewable Energy, Elsevier, vol. 222(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:162:y:2020:i:c:p:1763-1776. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.