IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i9p2200-d165222.html
   My bibliography  Save this article

Theoretical Study and Experimental Validation of a Hydrostatic Transmission Control for a City Bus Hybrid Driveline with Kinetic Energy Storage

Author

Listed:
  • Venelin Jivkov

    (Department of Theory of Mechanisms and Machines, Technical University of Sofia, Sofia 1000, Bulgaria)

  • Vutko Draganov

    (Department of Theory of Mechanisms and Machines, Technical University of Sofia, Sofia 1000, Bulgaria)

Abstract

A city bus with hybrid drive system was studied for its performance. The driveline under consideration consists of two alternative energy sources—an internal combustion engine (ICE) and kinetic energy storage (KES)—a hydrostatic transmission (HST), a drive axle and corresponding gears. A generalized law for HST control is obtained that satisfies kinematic and torque requirements for the alternative energy sources and the different modes of operation of the bus. A test stand was developed for validation of the chosen control strategy and for the energy flow simulations through the HST. The estimated maximum energy recovery potential is around 20–25%.

Suggested Citation

  • Venelin Jivkov & Vutko Draganov, 2018. "Theoretical Study and Experimental Validation of a Hydrostatic Transmission Control for a City Bus Hybrid Driveline with Kinetic Energy Storage," Energies, MDPI, vol. 11(9), pages 1-22, August.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:9:p:2200-:d:165222
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/9/2200/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/9/2200/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kugi, Andreas & Schlacher, Kurt & Aitzetmüller, Heinz & Hirmann, Gottfried, 2000. "Modeling and simulation of a hydrostatic transmission with variable-displacement pump," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 53(4), pages 409-414.
    2. Magnus Hedlund & Johan Lundin & Juan De Santiago & Johan Abrahamsson & Hans Bernhoff, 2015. "Flywheel Energy Storage for Automotive Applications," Energies, MDPI, vol. 8(10), pages 1-28, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhijie Liu & Guoqiang Zhang & Guoping Chu & Hanlin Niu & Yazhou Zhang & Fuzeng Yang, 2021. "Design Matching and Dynamic Performance Test for an HST-Based Drive System of a Hillside Crawler Tractor," Agriculture, MDPI, vol. 11(5), pages 1-21, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bizon, Nicu, 2019. "Efficient fuel economy strategies for the Fuel Cell Hybrid Power Systems under variable renewable/load power profile," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    2. Bizon, Nicu, 2019. "Hybrid power sources (HPSs) for space applications: Analysis of PEMFC/Battery/SMES HPS under unknown load containing pulses," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 14-37.
    3. Jiansong Li & Jiyun Zhao & Xiaochun Zhang, 2020. "A Novel Energy Recovery System Integrating Flywheel and Flow Regeneration for a Hydraulic Excavator Boom System," Energies, MDPI, vol. 13(2), pages 1-25, January.
    4. Brenda Rojas-Delgado & Monica Alonso & Hortensia Amaris & Juan de Santiago, 2019. "Wave Power Output Smoothing through the Use of a High-Speed Kinetic Buffer," Energies, MDPI, vol. 12(11), pages 1-28, June.
    5. Joni Dewanto & Oegik Soegihardjo, 2020. "Organizing Decision-Making Support System Based Multi-Dimensional Analysis of the Educational Process Data," Journal of ICT, Design, Engineering and Technological Science, Juhriyansyah Dalle, vol. 4(1), pages 6-11.
    6. Silva, Paolo & Giuffrida, Antonio & Fergnani, Nicola & Macchi, Ennio & Cantù, Matteo & Suffredini, Roberto & Schiavetti, Massimo & Gigliucci, Gianluca, 2014. "Performance prediction of a multi-MW wind turbine adopting an advanced hydrostatic transmission," Energy, Elsevier, vol. 64(C), pages 450-461.
    7. Sanjoy K Ghoshal & Sarnendu Paul & Subrata Samanta & Jay P Tripathi, 2016. "System identification and multi-fault isolation for a hydraulic drive with pump loading," Journal of Risk and Reliability, , vol. 230(4), pages 427-440, August.
    8. Philipp Glücker & Klaus Kivekäs & Jari Vepsäläinen & Panagiotis Mouratidis & Maximilian Schneider & Stephan Rinderknecht & Kari Tammi, 2021. "Prolongation of Battery Lifetime for Electric Buses through Flywheel Integration," Energies, MDPI, vol. 14(4), pages 1-19, February.
    9. Stefano Pietrosanti & William Holderbaum & Victor M. Becerra, 2016. "Optimal Power Management Strategy for Energy Storage with Stochastic Loads," Energies, MDPI, vol. 9(3), pages 1-17, March.
    10. Bai, Shengxi & Liu, Chunhua, 2021. "Overview of energy harvesting and emission reduction technologies in hybrid electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    11. Hong Li & Jiangwei Chu & Shufa Sun, 2022. "High-Performance Flywheel Hybrid Powertrain," Sustainability, MDPI, vol. 14(13), pages 1-15, July.
    12. Magnus Hedlund & Tobias Kamf & Juan De Santiago & Johan Abrahamsson & Hans Bernhoff, 2017. "Reluctance Machine for a Hollow Cylinder Flywheel," Energies, MDPI, vol. 10(3), pages 1-18, March.
    13. Zhang, Shiyou & Peng, Keming & Wei, Wenlong & Tang, Siqi & Yao, Jin, 2021. "The matrix method of energy analysis and energy-saving design on the electromechanical system," Energy, Elsevier, vol. 224(C).
    14. Elhoussin Elbouchikhi & Yassine Amirat & Gilles Feld & Mohamed Benbouzid & Zhibin Zhou, 2020. "A Lab-scale Flywheel Energy Storage System: Control Strategy and Domestic Applications," Energies, MDPI, vol. 13(3), pages 1-23, February.
    15. Giuseppe Fabri & Antonio Ometto & Marco Villani & Gino D’Ovidio, 2022. "A Battery-Free Sustainable Powertrain Solution for Hydrogen Fuel Cell City Transit Bus Application," Sustainability, MDPI, vol. 14(9), pages 1-16, April.
    16. Bizon, Nicu, 2018. "Effective mitigation of the load pulses by controlling the battery/SMES hybrid energy storage system," Applied Energy, Elsevier, vol. 229(C), pages 459-473.
    17. Wilson Cesar Sant’Ana & Robson Bauwelz Gonzatti & Germano Lambert-Torres & Erik Leandro Bonaldi & Bruno Silva Torres & Pedro Andrade de Oliveira & Rondineli Rodrigues Pereira & Luiz Eduardo Borges-da-, 2019. "Development and 24 Hour Behavior Analysis of a Peak-Shaving Equipment with Battery Storage," Energies, MDPI, vol. 12(11), pages 1-22, May.
    18. Giampieri, A. & Ling-Chin, J. & Ma, Z. & Smallbone, A. & Roskilly, A.P., 2020. "A review of the current automotive manufacturing practice from an energy perspective," Applied Energy, Elsevier, vol. 261(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:9:p:2200-:d:165222. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.