IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i11p2056-d235301.html
   My bibliography  Save this article

Development and 24 Hour Behavior Analysis of a Peak-Shaving Equipment with Battery Storage

Author

Listed:
  • Wilson Cesar Sant’Ana

    (Instituto Gnarus, Itajuba MG 37500-052, Brazil
    Instituto de Engenharia de Sistemas e Tecnologia da Informacao, Universidade Federal de Itajuba—UNIFEI, Itajuba MG 37500-903, Brazil)

  • Robson Bauwelz Gonzatti

    (Instituto de Engenharia de Sistemas e Tecnologia da Informacao, Universidade Federal de Itajuba—UNIFEI, Itajuba MG 37500-903, Brazil)

  • Germano Lambert-Torres

    (Instituto Gnarus, Itajuba MG 37500-052, Brazil)

  • Erik Leandro Bonaldi

    (Instituto Gnarus, Itajuba MG 37500-052, Brazil)

  • Bruno Silva Torres

    (Instituto de Engenharia de Sistemas e Tecnologia da Informacao, Universidade Federal de Itajuba—UNIFEI, Itajuba MG 37500-903, Brazil)

  • Pedro Andrade de Oliveira

    (Instituto de Engenharia de Sistemas e Tecnologia da Informacao, Universidade Federal de Itajuba—UNIFEI, Itajuba MG 37500-903, Brazil)

  • Rondineli Rodrigues Pereira

    (Instituto de Engenharia de Sistemas e Tecnologia da Informacao, Universidade Federal de Itajuba—UNIFEI, Itajuba MG 37500-903, Brazil)

  • Luiz Eduardo Borges-da-Silva

    (Instituto de Engenharia de Sistemas e Tecnologia da Informacao, Universidade Federal de Itajuba—UNIFEI, Itajuba MG 37500-903, Brazil)

  • Denis Mollica

    (EDP Sao Paulo Distribuicao de Energia, Sao Paulo SP 08820-460, Brazil)

  • Joselino Santana Filho

    (EDP Sao Paulo Distribuicao de Energia, Sao Paulo SP 08820-460, Brazil)

Abstract

This paper presents the development of a peak-shaving equipment, composed by a multilevel converter in a cascaded H-bridge topology and battery banks on the DC links. Between specific time periods, when the demand is higher, the equipment injects active power from the batteries into the grid to provide support to the system. During the other times of the day, when the demand is lower, the converter charges its battery banks with the exceeding (and low producing cost) energy from the grid. The charge and discharge control algorithms are implemented in a digital signal processor (DSP). The precise time of the day information is obtained from a real-time-clock from a global positioning system module (GPS), which communicates with the DSP through the serial interface. This paper presents the control algorithms and experimental results obtained in a 24 h continuous operation of the equipment.

Suggested Citation

  • Wilson Cesar Sant’Ana & Robson Bauwelz Gonzatti & Germano Lambert-Torres & Erik Leandro Bonaldi & Bruno Silva Torres & Pedro Andrade de Oliveira & Rondineli Rodrigues Pereira & Luiz Eduardo Borges-da-, 2019. "Development and 24 Hour Behavior Analysis of a Peak-Shaving Equipment with Battery Storage," Energies, MDPI, vol. 12(11), pages 1-22, May.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:11:p:2056-:d:235301
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/11/2056/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/11/2056/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Piotr Piórkowski & Adrian Chmielewski & Krzysztof Bogdziński & Jakub Możaryn & Tomasz Mydłowski, 2018. "Research on Ultracapacitors in Hybrid Systems: Case Study," Energies, MDPI, vol. 11(10), pages 1-13, September.
    2. Daniel Akinyele & Juri Belikov & Yoash Levron, 2017. "Battery Storage Technologies for Electrical Applications: Impact in Stand-Alone Photovoltaic Systems," Energies, MDPI, vol. 10(11), pages 1-39, November.
    3. Muhammad Umair Mutarraf & Yacine Terriche & Kamran Ali Khan Niazi & Juan C. Vasquez & Josep M. Guerrero, 2018. "Energy Storage Systems for Shipboard Microgrids—A Review," Energies, MDPI, vol. 11(12), pages 1-32, December.
    4. Ana Rodríguez & Francisco Huerta & Emilio J. Bueno & Francisco J. Rodríguez, 2013. "Analysis and Performance Comparison of Different Power Conditioning Systems for SMES-Based Energy Systems in Wind Turbines," Energies, MDPI, vol. 6(3), pages 1-27, March.
    5. Lai, Chun Sing & Jia, Youwei & Lai, Loi Lei & Xu, Zhao & McCulloch, Malcolm D. & Wong, Kit Po, 2017. "A comprehensive review on large-scale photovoltaic system with applications of electrical energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 439-451.
    6. Magnus Hedlund & Johan Lundin & Juan De Santiago & Johan Abrahamsson & Hans Bernhoff, 2015. "Flywheel Energy Storage for Automotive Applications," Energies, MDPI, vol. 8(10), pages 1-28, September.
    7. Holger C. Hesse & Michael Schimpe & Daniel Kucevic & Andreas Jossen, 2017. "Lithium-Ion Battery Storage for the Grid—A Review of Stationary Battery Storage System Design Tailored for Applications in Modern Power Grids," Energies, MDPI, vol. 10(12), pages 1-42, December.
    8. Claudia Rahmann & Benjamin Mac-Clure & Vijay Vittal & Felipe Valencia, 2017. "Break-Even Points of Battery Energy Storage Systems for Peak Shaving Applications," Energies, MDPI, vol. 10(7), pages 1-13, June.
    9. Strbac, Goran, 2008. "Demand side management: Benefits and challenges," Energy Policy, Elsevier, vol. 36(12), pages 4419-4426, December.
    10. Jidai Wang & Kunpeng Lu & Lan Ma & Jihong Wang & Mark Dooner & Shihong Miao & Jian Li & Dan Wang, 2017. "Overview of Compressed Air Energy Storage and Technology Development," Energies, MDPI, vol. 10(7), pages 1-22, July.
    11. Giorgio Pavesi & Giovanna Cavazzini & Guido Ardizzon, 2016. "Numerical Analysis of the Transient Behaviour of a Variable Speed Pump-Turbine during a Pumping Power Reduction Scenario," Energies, MDPI, vol. 9(7), pages 1-15, July.
    12. Subodh Kharel & Bahman Shabani, 2018. "Hydrogen as a Long-Term Large-Scale Energy Storage Solution to Support Renewables," Energies, MDPI, vol. 11(10), pages 1-17, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ruiyang Jin & Jie Song & Jie Liu & Wei Li & Chao Lu, 2020. "Location and Capacity Optimization of Distributed Energy Storage System in Peak-Shaving," Energies, MDPI, vol. 13(3), pages 1-15, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Damien Guilbert & Gianpaolo Vitale, 2019. "Dynamic Emulation of a PEM Electrolyzer by Time Constant Based Exponential Model," Energies, MDPI, vol. 12(4), pages 1-17, February.
    2. Siavash Asiaban & Nezmin Kayedpour & Arash E. Samani & Dimitar Bozalakov & Jeroen D. M. De Kooning & Guillaume Crevecoeur & Lieven Vandevelde, 2021. "Wind and Solar Intermittency and the Associated Integration Challenges: A Comprehensive Review Including the Status in the Belgian Power System," Energies, MDPI, vol. 14(9), pages 1-41, May.
    3. Martin Henke & Getu Hailu, 2020. "Thermal Management of Stationary Battery Systems: A Literature Review," Energies, MDPI, vol. 13(16), pages 1-16, August.
    4. Koirala, Binod Prasad & van Oost, Ellen & van der Windt, Henny, 2018. "Community energy storage: A responsible innovation towards a sustainable energy system?," Applied Energy, Elsevier, vol. 231(C), pages 570-585.
    5. Julian David Hunt & Behnam Zakeri & Andreas Nascimento & Diego Augusto de Jesus Pacheco & Epari Ritesh Patro & Bojan Đurin & Márcio Giannini Pereira & Walter Leal Filho & Yoshihide Wada, 2023. "Isothermal Deep Ocean Compressed Air Energy Storage: An Affordable Solution for Seasonal Energy Storage," Energies, MDPI, vol. 16(7), pages 1-18, March.
    6. Ander Zubiria & Álvaro Menéndez & Hans-Jürgen Grande & Pilar Meneses & Gregorio Fernández, 2022. "Multi-Criteria Decision-Making Problem for Energy Storage Technology Selection for Different Grid Applications," Energies, MDPI, vol. 15(20), pages 1-25, October.
    7. Rodrigo Martins & Holger C. Hesse & Johanna Jungbauer & Thomas Vorbuchner & Petr Musilek, 2018. "Optimal Component Sizing for Peak Shaving in Battery Energy Storage System for Industrial Applications," Energies, MDPI, vol. 11(8), pages 1-22, August.
    8. Alexandra G. Papadopoulou & George Vasileiou & Alexandros Flamos, 2020. "A Comparison of Dispatchable RES Technoeconomics: Is There a Niche for Concentrated Solar Power?," Energies, MDPI, vol. 13(18), pages 1-22, September.
    9. Das, Choton K. & Bass, Octavian & Kothapalli, Ganesh & Mahmoud, Thair S. & Habibi, Daryoush, 2018. "Overview of energy storage systems in distribution networks: Placement, sizing, operation, and power quality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1205-1230.
    10. Olabi, A.G. & Wilberforce, Tabbi & Sayed, Enas Taha & Abo-Khalil, Ahmed G. & Maghrabie, Hussein M. & Elsaid, Khaled & Abdelkareem, Mohammad Ali, 2022. "Battery energy storage systems and SWOT (strengths, weakness, opportunities, and threats) analysis of batteries in power transmission," Energy, Elsevier, vol. 254(PA).
    11. Lai, Chun Sing & Locatelli, Giorgio & Pimm, Andrew & Tao, Yingshan & Li, Xuecong & Lai, Loi Lei, 2019. "A financial model for lithium-ion storage in a photovoltaic and biogas energy system," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    12. Argyrou, Maria C. & Christodoulides, Paul & Kalogirou, Soteris A., 2018. "Energy storage for electricity generation and related processes: Technologies appraisal and grid scale applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 804-821.
    13. Iolanda Saviuc & Herbert Peremans & Steven Van Passel & Kevin Milis, 2019. "Economic Performance of Using Batteries in European Residential Microgrids under the Net-Metering Scheme," Energies, MDPI, vol. 12(1), pages 1-28, January.
    14. Cheng, Meng & Sami, Saif Sabah & Wu, Jianzhong, 2017. "Benefits of using virtual energy storage system for power system frequency response," Applied Energy, Elsevier, vol. 194(C), pages 376-385.
    15. McPherson, Madeleine & Stoll, Brady, 2020. "Demand response for variable renewable energy integration: A proposed approach and its impacts," Energy, Elsevier, vol. 197(C).
    16. Luna, M. & Di Piazza, M.C. & La Tona, G. & Accetta, A. & Pucci, M., 2021. "Exploiting dynamic modeling, parameter identification, and power electronics to implement a non-dissipative Li-ion battery hardware emulator," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 183(C), pages 48-65.
    17. Anna Kowalska-Pyzalska & Katarzyna Maciejowska & Katarzyna Sznajd-Weron & Rafal Weron, 2014. "Diffusion and adoption of dynamic electricity tariffs: An agent-based modeling approach," HSC Research Reports HSC/14/01, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
    18. Kowalska-Pyzalska, Anna & Maciejowska, Katarzyna & Suszczyński, Karol & Sznajd-Weron, Katarzyna & Weron, Rafał, 2014. "Turning green: Agent-based modeling of the adoption of dynamic electricity tariffs," Energy Policy, Elsevier, vol. 72(C), pages 164-174.
    19. Daví-Arderius, Daniel & Sanin, María-Eugenia & Trujillo-Baute, Elisa, 2017. "CO2 content of electricity losses," Energy Policy, Elsevier, vol. 104(C), pages 439-445.
    20. Claire M. Weiller & Michael G. Pollitt, 2013. "Platform markets and energy services," Working Papers EPRG 1334, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:11:p:2056-:d:235301. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.