IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i8p2054-d162528.html
   My bibliography  Save this article

Lifetime Prediction of a Polymer Electrolyte Membrane Fuel Cell under Automotive Load Cycling Using a Physically-Based Catalyst Degradation Model

Author

Listed:
  • Manik Mayur

    (Institute of Energy Systems Technology (INES), Offenburg University of Applied Sciences, Badstrasse 24, 77652 Offenburg, Germany)

  • Mathias Gerard

    (CEA LITEN, University of Grenoble Alpes, F-38054 Grenoble, France)

  • Pascal Schott

    (CEA LITEN, University of Grenoble Alpes, F-38054 Grenoble, France)

  • Wolfgang G. Bessler

    (Institute of Energy Systems Technology (INES), Offenburg University of Applied Sciences, Badstrasse 24, 77652 Offenburg, Germany)

Abstract

One of the bottlenecks hindering the usage of polymer electrolyte membrane fuel cell technology in automotive applications is the highly load-sensitive degradation of the cell components. The cell failure cases reported in the literature show localized cell component degradation, mainly caused by flow-field dependent non-uniform distribution of reactants. The existing methodologies for diagnostics of localized cell failure are either invasive or require sophisticated and expensive apparatus. In this study, with the help of a multiscale simulation framework, a single polymer electrolyte membrane fuel cell (PEMFC) model is exposed to a standardized drive cycle provided by a system model of a fuel cell car. A 2D multiphysics model of the PEMFC is used to investigate catalyst degradation due to spatio-temporal variations in the fuel cell state variables under the highly transient load cycles. A three-step (extraction, oxidation, and dissolution) model of platinum loss in the cathode catalyst layer is used to investigate the cell performance degradation due to the consequent reduction in the electro-chemical active surface area (ECSA). By using a time-upscaling methodology, we present a comparative prediction of cell end-of-life (EOL) under different driving behavior of New European Driving Cycle (NEDC) and Worldwide Harmonized Light Vehicles Test Cycle (WLTC).

Suggested Citation

  • Manik Mayur & Mathias Gerard & Pascal Schott & Wolfgang G. Bessler, 2018. "Lifetime Prediction of a Polymer Electrolyte Membrane Fuel Cell under Automotive Load Cycling Using a Physically-Based Catalyst Degradation Model," Energies, MDPI, vol. 11(8), pages 1-21, August.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:8:p:2054-:d:162528
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/8/2054/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/8/2054/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pérez, Luis C. & Brandão, Lúcia & Sousa, José M. & Mendes, Adélio, 2011. "Segmented polymer electrolyte membrane fuel cells--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 169-185, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Culubret, S. & Rubio, M.A. & Sanchez, D.G. & Urquia, A., 2024. "Performance uniformity analysis in polymer electrolyte fuel cell using long-term dynamic simulation," Applied Energy, Elsevier, vol. 365(C).
    2. Chiara Dall’Armi & Davide Pivetta & Rodolfo Taccani, 2023. "Hybrid PEM Fuel Cell Power Plants Fuelled by Hydrogen for Improving Sustainability in Shipping: State of the Art and Review on Active Projects," Energies, MDPI, vol. 16(4), pages 1-34, February.
    3. Xuan Meng & Jian Mei & Xingwang Tang & Jinhai Jiang & Chuanyu Sun & Kai Song, 2024. "The Degradation Prediction of Proton Exchange Membrane Fuel Cell Performance Based on a Transformer Model," Energies, MDPI, vol. 17(12), pages 1-13, June.
    4. Shantanu Pardhi & Sajib Chakraborty & Dai-Duong Tran & Mohamed El Baghdadi & Steven Wilkins & Omar Hegazy, 2022. "A Review of Fuel Cell Powertrains for Long-Haul Heavy-Duty Vehicles: Technology, Hydrogen, Energy and Thermal Management Solutions," Energies, MDPI, vol. 15(24), pages 1-55, December.
    5. Olivier Bethoux, 2020. "Hydrogen Fuel Cell Road Vehicles: State of the Art and Perspectives," Energies, MDPI, vol. 13(21), pages 1-28, November.
    6. Huu-Linh Nguyen & Sang-Min Lee & Sangseok Yu, 2023. "A Comprehensive Review of Degradation Prediction Methods for an Automotive Proton Exchange Membrane Fuel Cell," Energies, MDPI, vol. 16(12), pages 1-32, June.
    7. Lorenzo, Charles & Bouquain, David & Hibon, Samuel & Hissel, Daniel, 2021. "Synthesis of degradation mechanisms and of their impacts on degradation rates on proton-exchange membrane fuel cells and lithium-ion nickel–manganese–cobalt batteries in hybrid transport applicati," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    8. Johannes Klütsch & Stefan Pischinger, 2024. "Systematic Design of Cathode Air Supply Systems for PEM Fuel Cells," Energies, MDPI, vol. 17(14), pages 1-30, July.
    9. Zuo, Jian & Steiner, Nadia Yousfi & Li, Zhongliang & Hissel, Daniel, 2024. "Health management review for fuel cells: Focus on action phase," Renewable and Sustainable Energy Reviews, Elsevier, vol. 201(C).
    10. Liu, Hao & Chen, Jian & Hissel, Daniel & Lu, Jianguo & Hou, Ming & Shao, Zhigang, 2020. "Prognostics methods and degradation indexes of proton exchange membrane fuel cells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    11. Aihua Tang & Yuanhang Yang & Quanqing Yu & Zhigang Zhang & Lin Yang, 2022. "A Review of Life Prediction Methods for PEMFCs in Electric Vehicles," Sustainability, MDPI, vol. 14(16), pages 1-18, August.
    12. Tom Fletcher & Kambiz Ebrahimi, 2020. "The Effect of Fuel Cell and Battery Size on Efficiency and Cell Lifetime for an L7e Fuel Cell Hybrid Vehicle," Energies, MDPI, vol. 13(22), pages 1-18, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Miao, Tianwei & Tongsh, Chasen & Wang, Jianan & Cheng, Peng & Liang, Jinqiao & Wang, Zixuan & Chen, Wenmiao & Zhang, Chao & Xi, Fuqiang & Du, Qing & Wang, Bowen & Bai, Fuqiang & Jiao, Kui, 2022. "Current density and temperature distribution measurement and homogeneity analysis for a large-area proton exchange membrane fuel cell," Energy, Elsevier, vol. 239(PA).
    2. Yin, Cong & Gao, Yan & Li, Ting & Xie, Guangyou & Li, Kai & Tang, Hao, 2020. "Study of internal multi-parameter distributions of proton exchange membrane fuel cell with segmented cell device and coupled three-dimensional model," Renewable Energy, Elsevier, vol. 147(P1), pages 650-662.
    3. Alaefour, Ibrahim & Karimi, G. & Jiao, Kui & Li, X., 2012. "Measurement of current distribution in a proton exchange membrane fuel cell with various flow arrangements – A parametric study," Applied Energy, Elsevier, vol. 93(C), pages 80-89.
    4. Zhang, Qian & Lin, Rui & Técher, Ludovic & Cui, Xin, 2016. "Experimental study of variable operating parameters effects on overall PEMFC performance and spatial performance distribution," Energy, Elsevier, vol. 115(P1), pages 550-560.
    5. Garcia-Sanchez, D. & Morawietz, T. & da Rocha, P. Gama & Hiesgen, R. & Gazdzicki, P. & Friedrich, K.A., 2020. "Local impact of load cycling on degradation in polymer electrolyte fuel cells," Applied Energy, Elsevier, vol. 259(C).
    6. Singdeo, Debanand & Dey, Tapobrata & Gaikwad, Shrihari & Andreasen, Søren Juhl & Ghosh, Prakash C., 2017. "A new modified-serpentine flow field for application in high temperature polymer electrolyte fuel cell," Applied Energy, Elsevier, vol. 195(C), pages 13-22.
    7. Sutharssan, Thamo & Montalvao, Diogo & Chen, Yong Kang & Wang, Wen-Chung & Pisac, Claudia & Elemara, Hakim, 2017. "A review on prognostics and health monitoring of proton exchange membrane fuel cell," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 440-450.
    8. Christos Kalyvas & Anthony Kucernak & Dan Brett & Gareth Hinds & Steve Atkins & Nigel Brandon, 2014. "Spatially resolved diagnostic methods for polymer electrolyte fuel cells: a review," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 3(3), pages 254-275, May.
    9. Wang, Junye, 2017. "System integration, durability and reliability of fuel cells: Challenges and solutions," Applied Energy, Elsevier, vol. 189(C), pages 460-479.
    10. Yin, Cong & Cao, Jishen & Tang, Qilin & Su, Yanghuai & Wang, Renkang & Li, Kai & Tang, Hao, 2022. "Study of internal performance of commercial-size fuel cell stack with 3D multi-physical model and high resolution current mapping," Applied Energy, Elsevier, vol. 323(C).
    11. Yin, Cong & Gao, Jianlong & Wen, Xuhui & Xie, Guangyou & Yang, Chunhua & Fang, Honglin & Tang, Hao, 2016. "In situ investigation of proton exchange membrane fuel cell performance with novel segmented cell design and a two-phase flow model," Energy, Elsevier, vol. 113(C), pages 1071-1089.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:8:p:2054-:d:162528. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.