IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v123y2020ics1364032120300186.html
   My bibliography  Save this article

Prognostics methods and degradation indexes of proton exchange membrane fuel cells: A review

Author

Listed:
  • Liu, Hao
  • Chen, Jian
  • Hissel, Daniel
  • Lu, Jianguo
  • Hou, Ming
  • Shao, Zhigang

Abstract

Prognostics is a promising solution to the short lifetime and high-cost bottlenecks of proton exchange membrane fuel cells (PEMFCs). The advances of PEMFCs prognostics research can be divided into two main categories, namely, the innovations of prognostics methods and the innovations of degradation indexes. Among them, the degradation indexes are the prerequisites for accurate prognostics of PEMFCs. Although many prognostics methods have been proposed in recent years to improve the performance of prognostics, the research on degradation indexes of PEMFCs has been slow, and few studies have focused on more effective and more general degradation indexes. Currently, the most widely used degradation indexes are still the traditional indexes, which only reflect the macro-scale degradation of PEMFCs, such as voltage and power. In addition, the traditional indexes change as operating conditions change. For PEMFCs under dynamic operating conditions, especially in transportation applications, it is difficult to obtain accurate degradation information based on the traditional indexes. Due to the lack of more accurate, comprehensive, and general degradation indexes, the existing prognostics methods inevitably have limitations and deficiencies. The purpose of this paper is to provide a full review of the latest research advances in the prognostics of PEMFCs, especially the degradation indexes. Moreover, the challenges and future directions of prognostics research are also analyzed.

Suggested Citation

  • Liu, Hao & Chen, Jian & Hissel, Daniel & Lu, Jianguo & Hou, Ming & Shao, Zhigang, 2020. "Prognostics methods and degradation indexes of proton exchange membrane fuel cells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
  • Handle: RePEc:eee:rensus:v:123:y:2020:i:c:s1364032120300186
    DOI: 10.1016/j.rser.2020.109721
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032120300186
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2020.109721?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Baik, Kyung Don & Hong, Bo Ki & Kim, Min Soo, 2013. "Effects of operating parameters on hydrogen crossover rate through Nafion® membranes in polymer electrolyte membrane fuel cells," Renewable Energy, Elsevier, vol. 57(C), pages 234-239.
    2. Zhou, Daming & Gao, Fei & Breaz, Elena & Ravey, Alexandre & Miraoui, Abdellatif, 2017. "Degradation prediction of PEM fuel cell using a moving window based hybrid prognostic approach," Energy, Elsevier, vol. 138(C), pages 1175-1186.
    3. Chen, Huicui & Pei, Pucheng & Song, Mancun, 2015. "Lifetime prediction and the economic lifetime of Proton Exchange Membrane fuel cells," Applied Energy, Elsevier, vol. 142(C), pages 154-163.
    4. Liu, Hao & Chen, Jian & Hissel, Daniel & Su, Hongye, 2019. "Remaining useful life estimation for proton exchange membrane fuel cells using a hybrid method," Applied Energy, Elsevier, vol. 237(C), pages 910-919.
    5. Majlan, E.H. & Rohendi, D. & Daud, W.R.W. & Husaini, T. & Haque, M.A., 2018. "Electrode for proton exchange membrane fuel cells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 117-134.
    6. Chen, Kui & Laghrouche, Salah & Djerdir, Abdesslem, 2019. "Degradation model of proton exchange membrane fuel cell based on a novel hybrid method," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    7. Morando, S. & Jemei, S. & Hissel, D. & Gouriveau, R. & Zerhouni, N., 2017. "ANOVA method applied to proton exchange membrane fuel cell ageing forecasting using an echo state network," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 131(C), pages 283-294.
    8. Laetitia Dubau & Luis Castanheira & Frédéric Maillard & Marian Chatenet & Olivier Lottin & Gaël Maranzana & Jérôme Dillet & Adrien Lamibrac & Jean‐Christophe Perrin & Eddy Moukheiber & Assma ElKaddour, 2014. "A review of PEM fuel cell durability: materials degradation, local heterogeneities of aging and possible mitigation strategies," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 3(6), pages 540-560, November.
    9. Pei, Pucheng & Chen, Dongfang & Wu, Ziyao & Ren, Peng, 2019. "Nonlinear methods for evaluating and online predicting the lifetime of fuel cells," Applied Energy, Elsevier, vol. 254(C).
    10. Sharaf, Omar Z. & Orhan, Mehmet F., 2014. "An overview of fuel cell technology: Fundamentals and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 810-853.
    11. Bressel, Mathieu & Hilairet, Mickael & Hissel, Daniel & Ould Bouamama, Belkacem, 2016. "Extended Kalman Filter for prognostic of Proton Exchange Membrane Fuel Cell," Applied Energy, Elsevier, vol. 164(C), pages 220-227.
    12. Ma, Rui & Yang, Tao & Breaz, Elena & Li, Zhongliang & Briois, Pascal & Gao, Fei, 2018. "Data-driven proton exchange membrane fuel cell degradation predication through deep learning method," Applied Energy, Elsevier, vol. 231(C), pages 102-115.
    13. Wang, Yun & Chen, Ken S. & Mishler, Jeffrey & Cho, Sung Chan & Adroher, Xavier Cordobes, 2011. "A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research," Applied Energy, Elsevier, vol. 88(4), pages 981-1007, April.
    14. Zhu, Li & Chen, Junghui, 2018. "Prognostics of PEM fuel cells based on Gaussian process state space models," Energy, Elsevier, vol. 149(C), pages 63-73.
    15. Manik Mayur & Mathias Gerard & Pascal Schott & Wolfgang G. Bessler, 2018. "Lifetime Prediction of a Polymer Electrolyte Membrane Fuel Cell under Automotive Load Cycling Using a Physically-Based Catalyst Degradation Model," Energies, MDPI, vol. 11(8), pages 1-21, August.
    16. Jouin, Marine & Bressel, Mathieu & Morando, Simon & Gouriveau, Rafael & Hissel, Daniel & Péra, Marie-Cécile & Zerhouni, Noureddine & Jemei, Samir & Hilairet, Mickael & Ould Bouamama, Belkacem, 2016. "Estimating the end-of-life of PEM fuel cells: Guidelines and metrics," Applied Energy, Elsevier, vol. 177(C), pages 87-97.
    17. Fadzillah, D.M. & Rosli, M.I. & Talib, M.Z.M. & Kamarudin, S.K. & Daud, W.R.W., 2017. "Review on microstructure modelling of a gas diffusion layer for proton exchange membrane fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1001-1009.
    18. Jouin, Marine & Gouriveau, Rafael & Hissel, Daniel & Péra, Marie-Cécile & Zerhouni, Noureddine, 2016. "Degradations analysis and aging modeling for health assessment and prognostics of PEMFC," Reliability Engineering and System Safety, Elsevier, vol. 148(C), pages 78-95.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huu-Linh Nguyen & Sang-Min Lee & Sangseok Yu, 2023. "A Comprehensive Review of Degradation Prediction Methods for an Automotive Proton Exchange Membrane Fuel Cell," Energies, MDPI, vol. 16(12), pages 1-32, June.
    2. Chen, Kui & Badji, Abderrezak & Laghrouche, Salah & Djerdir, Abdesslem, 2022. "Polymer electrolyte membrane fuel cells degradation prediction using multi-kernel relevance vector regression and whale optimization algorithm," Applied Energy, Elsevier, vol. 318(C).
    3. Mezzi, Rania & Yousfi-Steiner, Nadia & Péra, Marie Cécile & Hissel, Daniel & Larger, Laurent, 2021. "An Echo State Network for fuel cell lifetime prediction under a dynamic micro-cogeneration load profile," Applied Energy, Elsevier, vol. 283(C).
    4. Zuo, Jian & Lv, Hong & Zhou, Daming & Xue, Qiong & Jin, Liming & Zhou, Wei & Yang, Daijun & Zhang, Cunman, 2021. "Deep learning based prognostic framework towards proton exchange membrane fuel cell for automotive application," Applied Energy, Elsevier, vol. 281(C).
    5. Chen, Kui & Laghrouche, Salah & Djerdir, Abdesslem, 2019. "Degradation model of proton exchange membrane fuel cell based on a novel hybrid method," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    6. He, Wenbin & Liu, Ting & Ming, Wuyi & Li, Zongze & Du, Jinguang & Li, Xiaoke & Guo, Xudong & Sun, Peiyan, 2024. "Progress in prediction of remaining useful life of hydrogen fuel cells based on deep learning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    7. Yue, Meiling & Jemei, Samir & Zerhouni, Noureddine & Gouriveau, Rafael, 2021. "Proton exchange membrane fuel cell system prognostics and decision-making: Current status and perspectives," Renewable Energy, Elsevier, vol. 179(C), pages 2277-2294.
    8. Ke Song & Yimin Wang & Xiao Hu & Jing Cao, 2020. "Online Prediction of Vehicular Fuel Cell Residual Lifetime Based on Adaptive Extended Kalman Filter," Energies, MDPI, vol. 13(23), pages 1-21, November.
    9. Deng, Huiwen & Hu, Weihao & Cao, Di & Chen, Weirong & Huang, Qi & Chen, Zhe & Blaabjerg, Frede, 2022. "Degradation trajectories prognosis for PEM fuel cell systems based on Gaussian process regression," Energy, Elsevier, vol. 244(PA).
    10. Chen, Hong & Zhan, Zhigang & Jiang, Panxing & Sun, Yahao & Liao, Liwen & Wan, Xiongbiao & Du, Qing & Chen, Xiaosong & Song, Hao & Zhu, Ruijie & Shu, Zhanhong & Li, Shang & Pan, Mu, 2022. "Whole life cycle performance degradation test and RUL prediction research of fuel cell MEA," Applied Energy, Elsevier, vol. 310(C).
    11. Liu, Ze & Xu, Sichuan & Zhao, Honghui & Wang, Yupeng, 2022. "Durability estimation and short-term voltage degradation forecasting of vehicle PEMFC system: Development and evaluation of machine learning models," Applied Energy, Elsevier, vol. 326(C).
    12. Pei, Pucheng & Chen, Dongfang & Wu, Ziyao & Ren, Peng, 2019. "Nonlinear methods for evaluating and online predicting the lifetime of fuel cells," Applied Energy, Elsevier, vol. 254(C).
    13. Song, Ke & Huang, Xing & Huang, Pengyu & Sun, Hui & Chen, Yuhui & Huang, Dongya, 2024. "Data-driven health state estimation and remaining useful life prediction of fuel cells," Renewable Energy, Elsevier, vol. 227(C).
    14. Wang, Chu & Li, Zhongliang & Outbib, Rachid & Dou, Manfeng & Zhao, Dongdong, 2022. "Symbolic deep learning based prognostics for dynamic operating proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 305(C).
    15. Liu, Hao & Chen, Jian & Hissel, Daniel & Su, Hongye, 2019. "Remaining useful life estimation for proton exchange membrane fuel cells using a hybrid method," Applied Energy, Elsevier, vol. 237(C), pages 910-919.
    16. Zhu, Li & Chen, Junghui, 2018. "Prognostics of PEM fuel cells based on Gaussian process state space models," Energy, Elsevier, vol. 149(C), pages 63-73.
    17. Jouin, Marine & Bressel, Mathieu & Morando, Simon & Gouriveau, Rafael & Hissel, Daniel & Péra, Marie-Cécile & Zerhouni, Noureddine & Jemei, Samir & Hilairet, Mickael & Ould Bouamama, Belkacem, 2016. "Estimating the end-of-life of PEM fuel cells: Guidelines and metrics," Applied Energy, Elsevier, vol. 177(C), pages 87-97.
    18. Hua, Zhiguang & Zheng, Zhixue & Péra, Marie-Cécile & Gao, Fei, 2020. "Remaining useful life prediction of PEMFC systems based on the multi-input echo state network," Applied Energy, Elsevier, vol. 265(C).
    19. Aihua Tang & Yuanhang Yang & Quanqing Yu & Zhigang Zhang & Lin Yang, 2022. "A Review of Life Prediction Methods for PEMFCs in Electric Vehicles," Sustainability, MDPI, vol. 14(16), pages 1-18, August.
    20. Deng, Zhihua & Chan, Siew Hwa & Chen, Qihong & Liu, Hao & Zhang, Liyan & Zhou, Keliang & Tong, Sirui & Fu, Zhichao, 2023. "Efficient degradation prediction of PEMFCs using ELM-AE based on fuzzy extension broad learning system," Applied Energy, Elsevier, vol. 331(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:123:y:2020:i:c:s1364032120300186. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.